ppo-LunarLander-v2 / config.json
juanloza's picture
PPO LunarLander trained
0d34e47 verified
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bcfe97f3a30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bcfe97f3ac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bcfe97f3b50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bcfe97f3be0>", "_build": "<function ActorCriticPolicy._build at 0x7bcfe97f3c70>", "forward": "<function ActorCriticPolicy.forward at 0x7bcfe97f3d00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bcfe97f3d90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bcfe97f3e20>", "_predict": "<function ActorCriticPolicy._predict at 0x7bcfe97f3eb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bcfe97f3f40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bcfe97fc040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bcfe97fc0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bcfe99911c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731146922077005611, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALO7ND0e2rg/wRU2P8qyNz6O16i8qz0uPQAAAAAAAAAAmvvuvR5YjT6uNmE+EtC1vgKnHj126jM9AAAAAAAAAAANTCK+KB+dPiS/jT40odS+HP1dOzJnlD0AAAAAAAAAAGbig7zhTrg/hVZlvqMr1T0mjIY8PbRUPAAAAAAAAAAAM9Qcvf0/rD++FwS/Zgn9vgMzjTotIPq9AAAAAAAAAACa4N68BMwRPsNK1D0AebG+TVZDPdPIGz0AAAAAAAAAAE1kvT2VRa4/3jYNPyxrqr5aLJQ9JTmsPgAAAAAAAAAAzQmTPGy65jzR0o89HuSEvr2MXT1CzpY9AAAAAAAAAAAzAx+7SCexugjUDrbEZQixyHgzOg69KDUAAIA/AACAPwAQkzyYzbQ/jq3hPFzr+75Ekmw9ZQ3TPQAAAAAAAAAAzUDpu+zysD/QlGq+MKrlvqxoOTsGoJW8AAAAAAAAAADmAWu9O3VEP/aKsTzbdJO+L4eZvbry/zsAAAAAAAAAAMBC4z3+RjU/0j/eOx4F4755vJA9QoFmvAAAAAAAAAAATbWqPd2RvD6GjpG9bYWcvgmtlbqNodK8AAAAAAAAAABNA4U99swPuirJMzMN+BUwh+OZOtFKyrMAAIA/AACAP81M4zp7eqq63605u4M3PTe1LZy6jSMdOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIeInSfDk6MAWyUS/iMAXSUR0CmXATkZJkHdX2UKGgGR0Bv187KaG5+aAdNBwFoCEdAplwO4d6syXV9lChoBkdAcgc2rn1WbWgHTQIBaAhHQKZcLPC2tuF1fZQoaAZHQHA0vcafjCJoB0vyaAhHQKZcV+gDifh1fZQoaAZHQHDwhMrVe8hoB00EAWgIR0CmXR8fNiYtdX2UKGgGR0BxabuhK15TaAdL7GgIR0CmXVI7Njb0dX2UKGgGR0BziGuyNXHSaAdNDAFoCEdApl1Z/qgRLHV9lChoBkdAcd5q5LAYYWgHS9BoCEdApl1XuAqd6XV9lChoBkdActx2St/4I2gHS+FoCEdApl34RAbADnV9lChoBkdAcfB4k/r0KGgHTQMBaAhHQKZeHD1oQFt1fZQoaAZHQHCYfoFFDv5oB00PAWgIR0CmXiC9Zid8dX2UKGgGR0BupCBRQ79yaAdL6WgIR0CmXjZ2pyZKdX2UKGgGR0ByKMmICU5daAdL0mgIR0CmXjkp7TlUdX2UKGgGR0BvAWPT5O8DaAdL5GgIR0CmXjzpxFRYdX2UKGgGR0Bxr/RZ2ZAqaAdL2WgIR0CmXo070WdmdX2UKGgGR0Bz2VTER8MNaAdL/2gIR0CmXq4sVclgdX2UKGgGR0BxmK4lQdjoaAdNBwFoCEdApl7dfG+9J3V9lChoBkdAcUY06o2n9GgHS+toCEdApl7tdLQHA3V9lChoBkdActQdJJ5E+mgHTQ4BaAhHQKZfLJnxri51fZQoaAZHQHFVmrwOOKhoB0v9aAhHQKZfS2pAD7t1fZQoaAZHQD28YixFAmloB0uzaAhHQKZfZGdZq211fZQoaAZHQHM/iMglnh9oB0vnaAhHQKZfz+cYqG11fZQoaAZHQHCaa5Gz8gpoB0vZaAhHQKZf2k2P1ct1fZQoaAZHQHGy1f/m1Y1oB0vkaAhHQKZf9rB0p3J1fZQoaAZHQHLgZ3LV4HJoB0vdaAhHQKZge7DEWIp1fZQoaAZHQHAxvM0P6KtoB0vRaAhHQKZgmRkEs8R1fZQoaAZHQHK4HcpLEk1oB0vYaAhHQKZgqhlDneV1fZQoaAZHQG/wyJsO5J9oB0vsaAhHQKZg0h3aBZp1fZQoaAZHQHJGcyad+XtoB0voaAhHQKZg3ZaFEiN1fZQoaAZHQE6XqWTot+VoB0uBaAhHQKZg6+FlCkZ1fZQoaAZHQHB/2APNFBpoB0v7aAhHQKZg+rPt2LZ1fZQoaAZHQG/Mir92ovVoB0voaAhHQKZhNh/iHZd1fZQoaAZHQHE9IP9UCJZoB0vvaAhHQKZhbE4vN/x1fZQoaAZHQHIJszuWrwRoB0v4aAhHQKZh3X7tRel1fZQoaAZHQG4WxDkU9IRoB0vxaAhHQKZiLI+W4Vh1fZQoaAZHQHPAhT4tYjloB00WAWgIR0CmYk6hYeT3dX2UKGgGR0BxpSx7iQ1aaAdNBAFoCEdApmy4xYaHbnV9lChoBkdAckVSDRMN+mgHS9toCEdApmzS4x1xKnV9lChoBkdAc7VNutOmBWgHS+VoCEdApmzleSjgynV9lChoBkdAcUALhaTwD2gHS/BoCEdApm0rZSNwSHV9lChoBkdARLgpON5t32gHS8xoCEdApm2ZqwhW53V9lChoBkdAcQMugHu7YmgHS/VoCEdApm3JUedTYXV9lChoBkdAc2gt2cJ+lWgHS/ZoCEdApm3nYvnKXHV9lChoBkdAcbaLs8gZCWgHS9BoCEdApm4W2mYShHV9lChoBkdAcr6QTEit72gHS/BoCEdApm48LYwqRXV9lChoBkdAck1kAxSHd2gHTQsBaAhHQKZuPeLvTgF1fZQoaAZHQHBa3/95yENoB0v/aAhHQKZuWdkrf+F1fZQoaAZHQHKsB+4LCvZoB00JAWgIR0CmbmemFajfdX2UKGgGR0BvAGP91loUaAdNAQFoCEdApm7cuanaWXV9lChoBkdAbhGsOoYNzGgHS+toCEdApm71l/Yra3V9lChoBkdAbasw7kn1F2gHTQoBaAhHQKZvizl90A91fZQoaAZHQG+V/jKgZjxoB0vwaAhHQKZvmPaL4vh1fZQoaAZHQHAcEYj0L+hoB0v+aAhHQKZv4xubZvl1fZQoaAZHQHMT2Ef1YhdoB00eAWgIR0Cmb+b/n4fwdX2UKGgGR0Buh5PoFFDwaAdL4WgIR0Cmb+okAxSHdX2UKGgGR0Bx+pFQVKwqaAdNFgFoCEdApnBC4e9zwXV9lChoBkdAchcLFXJYDGgHS+JoCEdApnBXTAnDznV9lChoBkdATlgiosI3SGgHS8NoCEdApnCQI4VARnV9lChoBkdAcLikxREWqWgHS/VoCEdApnDbafzz3HV9lChoBkdASonyqdYnv2gHS55oCEdApnDm1OTJQ3V9lChoBkdAc1gZUkv9L2gHS91oCEdApnETI91U2nV9lChoBkdAcedYht+CsmgHS+5oCEdApnEZZSvTw3V9lChoBkdAckYFLFn7HmgHTQIBaAhHQKZxdzcynDR1fZQoaAZHQHEKZjDsMRZoB000AWgIR0CmcYXDWK/EdX2UKGgGR0ByIYTGo73gaAdNJQFoCEdApnJ+uNgjQnV9lChoBkdAcjGwnpjc22gHS/VoCEdApnKae5Fw1nV9lChoBkdAcK9pzcRDkWgHS/RoCEdApnL1Ql8gIXV9lChoBkdAcWjBmf5DZ2gHTQoBaAhHQKZy8/cnE2p1fZQoaAZHQHMJLaVUuL9oB0vzaAhHQKZy+ejEehh1fZQoaAZHQHHXcrNGEwpoB0vfaAhHQKZzcAaNuLt1fZQoaAZHQHBkn2AXl8xoB0v1aAhHQKZzetJWeYl1fZQoaAZHQGzbdZq20AtoB00HAWgIR0Cmc6VKGtZFdX2UKGgGR0BxwS+/QBxQaAdL42gIR0Cmc+BJyyUtdX2UKGgGR0BvvtWn0kGBaAdL/WgIR0CmdHIu5BkadX2UKGgGR0BvlSunuRcNaAdNEAFoCEdApnR6VdHDrXV9lChoBkdAcoJT238XN2gHS/NoCEdApnTAQ+UyHnV9lChoBkdAcP1DdP+GXWgHTRkBaAhHQKZ03Z5iVjZ1fZQoaAZHQHIcU4NqgyxoB00EAWgIR0CmdQrR0EHMdX2UKGgGR0Bv7mafBeolaAdL52gIR0CmdbMERraedX2UKGgGR0Bxqr3bmEGraAdNAgFoCEdApnY31+RYBHV9lChoBkdAcKkuxrzoU2gHS85oCEdApnZekzoECHV9lChoBkdAcZRDRc/t6WgHTQQBaAhHQKZ2p1uivgZ1fZQoaAZHQHGg2dy1eBxoB00GAWgIR0CmdrYQz1sddX2UKGgGR0ByXaFQEZBLaAdL5WgIR0CmdsMT37DVdX2UKGgGR0ByuaGCZnctaAdL02gIR0CmdujLjghsdX2UKGgGR0BysJy+6Ae8aAdNGQFoCEdApnb0jgQ6IXV9lChoBkdAcctAXVLBbmgHS/1oCEdApndAZXMhYHV9lChoBkdAcIm6v7m+02gHS+JoCEdApneoX0oSc3V9lChoBkdAcOSLronrp2gHS+ZoCEdApne/KISDiHV9lChoBkdAboQrd30PH2gHS+NoCEdApngV2C/XXnV9lChoBkdAcWVujRD1G2gHS+xoCEdApngZfMOf/XV9lChoBkdAZX9Y0VJti2gHTYECaAhHQKZ4kpWFN+N1fZQoaAZHQHGxv7m+0w9oB0vEaAhHQKZ4+lByCFt1fZQoaAZHQHEbLeZXuE5oB00gAWgIR0CmeRoHs1KodX2UKGgGR0BzTgx7AtWdaAdNDAFoCEdApnl726ClJ3V9lChoBkdAb5ufNiYsumgHS9BoCEdApnnSzw+dLHV9lChoBkdAcxru8K5TZWgHS9xoCEdApnnzGkvboXV9lChoBkdAcLEbMHKOk2gHTQABaAhHQKZ58kO7QLN1fZQoaAZHQHLq522XsxBoB0voaAhHQKZ5+KhL5AR1fZQoaAZHQG4E67EpAlhoB0vxaAhHQKZ5/YNiH7B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 432, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}