ppo-LunarLander-v2 / config.json
juanloza's picture
PPO LunarLander trained
79d9517 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bcfe97f3a30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bcfe97f3ac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bcfe97f3b50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bcfe97f3be0>", "_build": "<function ActorCriticPolicy._build at 0x7bcfe97f3c70>", "forward": "<function ActorCriticPolicy.forward at 0x7bcfe97f3d00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bcfe97f3d90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bcfe97f3e20>", "_predict": "<function ActorCriticPolicy._predict at 0x7bcfe97f3eb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bcfe97f3f40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bcfe97fc040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bcfe97fc0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bcfe99911c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731144816119599735, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAN21hz7Dt58+s2SUvkMUW75tchU9w4bAvAAAAAAAAAAAmrAgvuqUsj99lb2+zcbVvr2nN7690PS9AAAAAAAAAADzygG+4DymP0ftm74zo7e+TMFLvt6nTL0AAAAAAAAAAADGdT3cygm87DJAvPAHnjzUFG49E9mEvQAAgD8AAIA/wP+TPukKHD+KxbQ8SfCmvl+6Qj5ODf69AAAAAAAAAABNwnE9189mux3/Zz5MPEg8mZWXvEbLLj0AAIA/AACAPzPJKjzhZIy6FVIJuKm19LIB6JM6iCYfNwAAgD8AAIA/RtUvPrE0rD7ucSy+03Nsvi6/3zyXnIG9AAAAAAAAAADaoac9KOeJPh9nxL2xcQK+LNFQvOKu4jwAAAAAAAAAABqGKT1UJ9m8R7SSvScokr1EdI09PBorPgAAgD8AAIA/c2u9Pfb8J7pyGs45gaQLtizdbzhwHeu4AAAAAAAAgD8zFlU9W5OAPlNgWr5yqX++8zYKvdqlj70AAAAAAAAAAM1q1T2k4Bu5oAIpvA0THj3PEys6xNkjvAAAgD8AAAAAAGEBPRRwrLpPa7m6XrLNOj72rTuNsO27AACAPwAAgD8zxU49hUPdudD0CjZ8wxkxxhPiuZZHJLUAAIA/AACAPyaDDD5BsQM+QvqdvoGXQL7HC1W9ZqPsvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEZl3ljmS2MAWyUTQsBjAF0lEdAl7vsYAKfF3V9lChoBkdAbWiwUQCjlGgHTWMBaAhHQJe9COgg5ip1fZQoaAZHQFO8F6Rhc7hoB03oA2gIR0CXvVVVPva2dX2UKGgGR0BOVItlI3BIaAdLy2gIR0CXvnakAPupdX2UKGgGR0BtvuvECNjtaAdL/WgIR0CXvx+QU5+6dX2UKGgGR0BwZs5DJEH/aAdNEQFoCEdAl8C508vEj3V9lChoBkdAbzw2YOUdJmgHTRgBaAhHQJfAxo6CDmN1fZQoaAZHQHB99pudf9hoB01tAWgIR0CXwVQ1aW5ZdX2UKGgGR0Bw3y3LFGXpaAdNOwFoCEdAl8GDUd7v5XV9lChoBkdAchbbVBlcyGgHTQsBaAhHQJfCOtCAtnR1fZQoaAZHQFRFqfe1rqNoB0vbaAhHQJfCclAu7H11fZQoaAZHQHJGAuyu6mRoB0vyaAhHQJfCwyJsO5J1fZQoaAZHQHGHby6MBIZoB01LAWgIR0CXwwuHvc8DdX2UKGgGR0Bu5VZDArQPaAdNDwFoCEdAl8P974SHunV9lChoBkdAcNe/mT1TSGgHS/9oCEdAl8R2cFyJbnV9lChoBkdAbqDe9i+cpmgHTRIBaAhHQJfFqpkwvg51fZQoaAZHQG3WUuUUwi9oB0v4aAhHQJfFwIeHSF51fZQoaAZHQHKOL2tdRixoB00bAWgIR0CXxpUD+zdDdX2UKGgGR0BwqHOzIFNdaAdNAwFoCEdAl8bVl9SdfHV9lChoBkdAcU/BVuJk5WgHTQQBaAhHQJfHSxHG0eF1fZQoaAZHQG9Rl4TsY2toB00FAWgIR0CXyGUEgW8AdX2UKGgGR0BySLMxGlQ/aAdNFwFoCEdAl8nkPMB6r3V9lChoBkdAbuFLIxQBP2gHTTEBaAhHQJfJ9TxXnyN1fZQoaAZHQHDGqcZtNztoB0vzaAhHQJfKH6wdKdx1fZQoaAZHQHMDJ26kIopoB0vqaAhHQJfKKp++dsl1fZQoaAZHQHHTBvBJqZdoB01CAWgIR0CXyyPszEaVdX2UKGgGR0BtRmACnxaxaAdNIQFoCEdAl8tMPWhAW3V9lChoBkdAcGbGDcuanmgHTUQBaAhHQJfMM0Ltu1p1fZQoaAZHQEsE/Zdv865oB03oA2gIR0CXzMo4MnZ1dX2UKGgGR0BvOamGdqcmaAdNDwFoCEdAl80AG4ZuRHV9lChoBkdAcJlBAv+OwWgHS/doCEdAl82LHp8neHV9lChoBkdAccL5HVf/m2gHTTMBaAhHQJfNjvYvnKZ1fZQoaAZHQHDLIE0SAYpoB00GAWgIR0CXzgBwMpgDdX2UKGgGR0Br8KZpi7TVaAdNGwFoCEdAl89PRu0kW3V9lChoBkdAbcfybQTmGWgHTSoBaAhHQJfP+a8YhuB1fZQoaAZHQHHGoYJmdy1oB0v+aAhHQJfQLcer+5x1fZQoaAZHQHDgepwS8J5oB0vxaAhHQJfRDXtjTa11fZQoaAZHQHDzxBVuJk5oB01BAWgIR0CX0RrHU+cIdX2UKGgGR0BxLNF1B+nZaAdNAQFoCEdAl9KiItUXHnV9lChoBkdAcRjTz/ZM+WgHS+5oCEdAl9MP6KtPpXV9lChoBkdAb5wy31BdEGgHTR0BaAhHQJfTqbe/Ho51fZQoaAZHQHCzaPXCj1xoB01FAWgIR0CX09BOpKjBdX2UKGgGR0Bxep7+kxh2aAdNVAFoCEdAl9QdRekYXXV9lChoBkdAcNewMpgCwWgHTSABaAhHQJfVcmmce8x1fZQoaAZHQHJqVurIYFdoB00gAWgIR0CX1hZTho/SdX2UKGgGR0BwzrDgqEvkaAdNAQFoCEdAl9dQRsdkrnV9lChoBkdAcCIQhfShJ2gHTUUBaAhHQJfXW05U96l1fZQoaAZHQG4oXEhq0t1oB0vqaAhHQJfXiHk92X91fZQoaAZHQHEag1JlJ6JoB0v2aAhHQJfXtSBK+SN1fZQoaAZHQHHke5BkZrJoB0v5aAhHQJfY+J2t+1B1fZQoaAZHQHDRRYRujypoB0v8aAhHQJfZAw8GLUF1fZQoaAZHQG7Vf336AOJoB0v5aAhHQJfwc/LTx5N1fZQoaAZHQHCvR/ViF0xoB00hAWgIR0CX8ZMZxaPkdX2UKGgGR0ByrHhybQTmaAdNUgJoCEdAl/HjSXt0FXV9lChoBkdAcZaGA08/2WgHTUcBaAhHQJfy4mZ3LV51fZQoaAZHQHDvVHrhR65oB00gAWgIR0CX81PPLPlddX2UKGgGR0BwhnN2TxG2aAdNDwFoCEdAl/RPHggow3V9lChoBkdAcLs6/7BO6GgHS+doCEdAl/TfHPu5SXV9lChoBkdAcpBm9g4OtmgHTS8BaAhHQJf2IiV0Lc91fZQoaAZHQHIEcwQDmr9oB0vzaAhHQJf3TQyAQQN1fZQoaAZHQG/N7uUliSdoB00wAWgIR0CX98ddVvMsdX2UKGgGR0Bt9u7YkE9uaAdNPgFoCEdAl/gPfoA4oHV9lChoBkdAcWISW7e2u2gHTTIBaAhHQJf4E1JlJ6J1fZQoaAZHQHE7PWhAWzpoB00VAWgIR0CX+IOYYzi0dX2UKGgGR0BwiqudPLxJaAdL3WgIR0CX+mXYDklvdX2UKGgGR0BwCqdjG1hLaAdNOQFoCEdAl/0M4LkS3HV9lChoBkdAbzV9jwx33mgHTRIBaAhHQJf9SsCDEm91fZQoaAZHQHA92Y0EX+FoB00LAWgIR0CX/V6InBtUdX2UKGgGR0BwcpOzposaaAdNTgFoCEdAl/7LbtZ3cHV9lChoBkdAcXEOIInjQ2gHTRYBaAhHQJf+2wA2hqV1fZQoaAZHQHHRAl8gIQhoB00kAWgIR0CYABQpF1B/dX2UKGgGR0Bva99Dx9XtaAdNHAFoCEdAmAJqdxyXD3V9lChoBkdAcTqvkzXSSmgHTREBaAhHQJgCxlGwzLx1fZQoaAZHQHDu42XLNfRoB00aAWgIR0CYAtPd2xIKdX2UKGgGR0BxrL4+KTB7aAdNRgFoCEdAmALUgr6LwXV9lChoBkdAcE78gIQe3mgHTQUBaAhHQJgC0mG/N7l1fZQoaAZHQFi8bF0gbIdoB03oA2gIR0CYBMurp7kXdX2UKGgGR0BwbIMG5c1PaAdNEwFoCEdAmAUm4AjptHV9lChoBkdATO/dyksSTWgHTegDaAhHQJgGWq814xF1fZQoaAZHQHFTpFG5MDhoB00JAWgIR0CYB1CkoF3ZdX2UKGgGR0BwGT5O8CgcaAdNLQFoCEdAmAhgM2FWXHV9lChoBkdAb1DmUW2w3mgHTRQBaAhHQJgJA9HMEA51fZQoaAZHQHAQS35N47loB03NAWgIR0CYCVRAKOT8dX2UKGgGR0BwSm8Gs3hoaAdNSAFoCEdAmAmc7ZFoc3V9lChoBkdAba/CHh0heWgHTSkBaAhHQJgJs+GGmDV1fZQoaAZHQHHh+I/JNj9oB00lAWgIR0CYCpY8Md92dX2UKGgGR0Bufm4Cp3otaAdL/GgIR0CYC2TEzfrKdX2UKGgGR0BvE74gzP8iaAdNFQFoCEdAmAxU/bCaZ3V9lChoBkdAcIPAoG6f8WgHTRsBaAhHQJgMitozvZ11fZQoaAZHQFph7ALy+YdoB03oA2gIR0CYDSUb1h9cdX2UKGgGR0BywYtnPE88aAdNLgFoCEdAmA0qoZQ53nV9lChoBkdAcTXZeAuqWGgHTT0BaAhHQJgNS83++/R1fZQoaAZHQENASh8IAwRoB0uraAhHQJgOd/qgRK91fZQoaAZHQG5+AhbGFSNoB00hAWgIR0CYDrb8m8dxdX2UKGgGR0BuwRRKpT/AaAdNNgFoCEdAmA8DMJQcgnV9lChoBkdAb0INVBD5TWgHTRoBaAhHQJgPaX6ZYxN1fZQoaAZHQG/OvgNwzchoB00HAWgIR0CYD66+nIhhdX2UKGgGR0BxJx6PbO/taAdL9WgIR0CYEP101ZTydX2UKGgGR0Bwj+0dBBzFaAdNGQFoCEdAmBH9QTEiuHV9lChoBkdAcXk5IpYs/mgHTSQBaAhHQJgSFNHpbEB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}