File size: 1,819 Bytes
d0e46ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: phi-3-mini-NER-PII-Vast3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi-3-mini-NER-PII-Vast3
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1122
- Precision: 0.6826
- Recall: 0.8382
- F1: 0.7524
- Accuracy: 0.9697
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall |
|:-------------:|:-----:|:-----:|:--------:|:------:|:---------------:|:---------:|:------:|
| 0.1017 | 1.0 | 11105 | 0.9693 | 0.7506 | 0.1123 | 0.6807 | 0.8364 |
| 0.0782 | 2.0 | 22210 | 0.1119 | 0.6819 | 0.8382 | 0.7520 | 0.9697 |
| 0.0944 | 3.0 | 33315 | 0.1122 | 0.6826 | 0.8382 | 0.7524 | 0.9697 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|