--- library_name: transformers base_model: dccuchile/bert-base-spanish-wwm-uncased tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-spanish-wwm-uncased-finetuned-ner1 results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9483257314495495 - name: Recall type: recall value: 0.9656754460492778 - name: F1 type: f1 value: 0.9569219543681419 - name: Accuracy type: accuracy value: 0.9766181574620958 --- # bert-base-spanish-wwm-uncased-finetuned-ner This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1423 - Precision: 0.9483 - Recall: 0.9657 - F1: 0.9569 - Accuracy: 0.9766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0179 | 1.0 | 612 | 0.1292 | 0.9547 | 0.9629 | 0.9588 | 0.9779 | | 0.0133 | 2.0 | 1224 | 0.1574 | 0.9463 | 0.9684 | 0.9572 | 0.9766 | | 0.0146 | 3.0 | 1836 | 0.1179 | 0.9500 | 0.9622 | 0.9561 | 0.9769 | | 0.0238 | 4.0 | 2448 | 0.1388 | 0.9441 | 0.9677 | 0.9557 | 0.9759 | | 0.0152 | 5.0 | 3060 | 0.1442 | 0.9430 | 0.9634 | 0.9531 | 0.9754 | | 0.0155 | 6.0 | 3672 | 0.1401 | 0.9480 | 0.9641 | 0.9560 | 0.9760 | | 0.0126 | 7.0 | 4284 | 0.1411 | 0.9468 | 0.9676 | 0.9571 | 0.9769 | | 0.0131 | 8.0 | 4896 | 0.1427 | 0.9484 | 0.9657 | 0.9570 | 0.9767 | | 0.0117 | 9.0 | 5508 | 0.1391 | 0.9485 | 0.9651 | 0.9567 | 0.9767 | | 0.0116 | 10.0 | 6120 | 0.1423 | 0.9483 | 0.9657 | 0.9569 | 0.9766 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3