--- library_name: transformers base_model: dccuchile/bert-base-spanish-wwm-uncased tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-spanish-wwm-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9499079600602444 - name: Recall type: recall value: 0.9645426224865478 - name: F1 type: f1 value: 0.9571693552920016 - name: Accuracy type: accuracy value: 0.977242282165256 --- # bert-base-spanish-wwm-uncased-finetuned-ner This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1255 - Precision: 0.9499 - Recall: 0.9645 - F1: 0.9572 - Accuracy: 0.9772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0412 | 1.0 | 612 | 0.1343 | 0.9401 | 0.9624 | 0.9512 | 0.9734 | | 0.0632 | 2.0 | 1224 | 0.1082 | 0.9360 | 0.9654 | 0.9505 | 0.9746 | | 0.0568 | 3.0 | 1836 | 0.1070 | 0.9469 | 0.9659 | 0.9563 | 0.9765 | | 0.0486 | 4.0 | 2448 | 0.1104 | 0.9477 | 0.9669 | 0.9572 | 0.9771 | | 0.0334 | 5.0 | 3060 | 0.1158 | 0.9425 | 0.9643 | 0.9533 | 0.9756 | | 0.0311 | 6.0 | 3672 | 0.1238 | 0.9449 | 0.9644 | 0.9546 | 0.9753 | | 0.0249 | 7.0 | 4284 | 0.1178 | 0.9473 | 0.9652 | 0.9561 | 0.9767 | | 0.0245 | 8.0 | 4896 | 0.1244 | 0.9483 | 0.9656 | 0.9569 | 0.9772 | | 0.0185 | 9.0 | 5508 | 0.1227 | 0.9492 | 0.9643 | 0.9567 | 0.9771 | | 0.0165 | 10.0 | 6120 | 0.1255 | 0.9499 | 0.9645 | 0.9572 | 0.9772 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3