--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9437070282658518 - name: Recall type: recall value: 0.9691575953711876 - name: F1 type: f1 value: 0.9562630025642267 - name: Accuracy type: accuracy value: 0.977555086732302 --- # bert-base-uncased-finetuned-ner This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1107 - Precision: 0.9437 - Recall: 0.9692 - F1: 0.9563 - Accuracy: 0.9776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4381 | 1.0 | 612 | 0.1172 | 0.9235 | 0.9536 | 0.9383 | 0.9689 | | 0.1389 | 2.0 | 1224 | 0.1117 | 0.9247 | 0.9731 | 0.9483 | 0.9717 | | 0.0935 | 3.0 | 1836 | 0.0962 | 0.9433 | 0.9662 | 0.9546 | 0.9769 | | 0.0758 | 4.0 | 2448 | 0.0926 | 0.9408 | 0.9736 | 0.9569 | 0.9771 | | 0.0536 | 5.0 | 3060 | 0.0958 | 0.9404 | 0.9722 | 0.9561 | 0.9769 | | 0.0476 | 6.0 | 3672 | 0.1029 | 0.9418 | 0.9681 | 0.9548 | 0.9761 | | 0.0395 | 7.0 | 4284 | 0.1023 | 0.9425 | 0.9720 | 0.9570 | 0.9769 | | 0.0375 | 8.0 | 4896 | 0.1091 | 0.9426 | 0.9695 | 0.9559 | 0.9771 | | 0.0299 | 9.0 | 5508 | 0.1080 | 0.9451 | 0.9693 | 0.9570 | 0.9778 | | 0.0266 | 10.0 | 6120 | 0.1107 | 0.9437 | 0.9692 | 0.9563 | 0.9776 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3