--- library_name: transformers base_model: FacebookAI/xlm-roberta-large-finetuned-conll03-english tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-finetuned-conll03-english-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.947671764437343 - name: Recall type: recall value: 0.9724776014522457 - name: F1 type: f1 value: 0.9599144533394989 - name: Accuracy type: accuracy value: 0.9809696788972173 --- # xlm-roberta-large-finetuned-conll03-english-finetuned-ner This model is a fine-tuned version of [FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.0876 - Precision: 0.9477 - Recall: 0.9725 - F1: 0.9599 - Accuracy: 0.9810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.255 | 1.0 | 612 | 0.0956 | 0.9305 | 0.9638 | 0.9468 | 0.9749 | | 0.0997 | 2.0 | 1224 | 0.0871 | 0.9397 | 0.9740 | 0.9565 | 0.9795 | | 0.0711 | 3.0 | 1836 | 0.0848 | 0.9474 | 0.9718 | 0.9595 | 0.9806 | | 0.0552 | 4.0 | 2448 | 0.0860 | 0.9464 | 0.9744 | 0.9602 | 0.9808 | | 0.0354 | 5.0 | 3060 | 0.0876 | 0.9477 | 0.9725 | 0.9599 | 0.9810 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3