--- library_name: sklearn tags: - sklearn - skops - tabular-regression model_format: skops model_file: model.skops widget: structuredData: AveBedrms: - 0.9290780141843972 - 0.9458483754512635 - 1.087360594795539 AveOccup: - 3.1134751773049647 - 3.0613718411552346 - 3.2657992565055762 AveRooms: - 6.304964539007092 - 6.945848375451264 - 3.8884758364312266 HouseAge: - 17.0 - 15.0 - 24.0 Latitude: - 34.23 - 36.84 - 34.04 Longitude: - -117.41 - -119.77 - -118.3 MedInc: - 6.1426 - 5.3886 - 1.7109 Population: - 439.0 - 848.0 - 1757.0 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure [More Information Needed] ### Hyperparameters
Click to expand | Hyperparameter | Value | |-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | cv | | | estimators | [('knn@5', Pipeline(steps=[('select_cols',
ColumnTransformer(transformers=[('long_and_lat', 'passthrough',
['Longitude', 'Latitude'])])),
('knn', KNeighborsRegressor())]))] | | final_estimator__alpha | 0.9 | | final_estimator__ccp_alpha | 0.0 | | final_estimator__criterion | friedman_mse | | final_estimator__init | | | final_estimator__learning_rate | 0.1 | | final_estimator__loss | squared_error | | final_estimator__max_depth | 3 | | final_estimator__max_features | | | final_estimator__max_leaf_nodes | | | final_estimator__min_impurity_decrease | 0.0 | | final_estimator__min_samples_leaf | 1 | | final_estimator__min_samples_split | 2 | | final_estimator__min_weight_fraction_leaf | 0.0 | | final_estimator__n_estimators | 500 | | final_estimator__n_iter_no_change | | | final_estimator__random_state | 0 | | final_estimator__subsample | 1.0 | | final_estimator__tol | 0.0001 | | final_estimator__validation_fraction | 0.1 | | final_estimator__verbose | 0 | | final_estimator__warm_start | False | | final_estimator | GradientBoostingRegressor(n_estimators=500, random_state=0) | | n_jobs | | | passthrough | True | | verbose | 0 | | knn@5 | Pipeline(steps=[('select_cols',
ColumnTransformer(transformers=[('long_and_lat', 'passthrough',
['Longitude', 'Latitude'])])),
('knn', KNeighborsRegressor())]) | | knn@5__memory | | | knn@5__steps | [('select_cols', ColumnTransformer(transformers=[('long_and_lat', 'passthrough',
['Longitude', 'Latitude'])])), ('knn', KNeighborsRegressor())] | | knn@5__verbose | False | | knn@5__select_cols | ColumnTransformer(transformers=[('long_and_lat', 'passthrough',
['Longitude', 'Latitude'])]) | | knn@5__knn | KNeighborsRegressor() | | knn@5__select_cols__n_jobs | | | knn@5__select_cols__remainder | drop | | knn@5__select_cols__sparse_threshold | 0.3 | | knn@5__select_cols__transformer_weights | | | knn@5__select_cols__transformers | [('long_and_lat', 'passthrough', ['Longitude', 'Latitude'])] | | knn@5__select_cols__verbose | False | | knn@5__select_cols__verbose_feature_names_out | True | | knn@5__select_cols__long_and_lat | passthrough | | knn@5__knn__algorithm | auto | | knn@5__knn__leaf_size | 30 | | knn@5__knn__metric | minkowski | | knn@5__knn__metric_params | | | knn@5__knn__n_jobs | | | knn@5__knn__n_neighbors | 5 | | knn@5__knn__p | 2 | | knn@5__knn__weights | uniform |
### Model Plot
StackingRegressor(estimators=[('knn@5',Pipeline(steps=[('select_cols',ColumnTransformer(transformers=[('long_and_lat','passthrough',['Longitude','Latitude'])])),('knn',KNeighborsRegressor())]))],final_estimator=GradientBoostingRegressor(n_estimators=500,random_state=0),passthrough=True)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```