--- base_model: medicalai/ClinicalBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ClinicalBERT_BC5CDR_NER_new results: [] --- # ClinicalBERT_BC5CDR_NER_new This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1097 - Precision: 0.7957 - Recall: 0.8166 - F1: 0.8060 - Accuracy: 0.9658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 286 | 0.1154 | 0.7710 | 0.7821 | 0.7765 | 0.9611 | | 0.145 | 2.0 | 572 | 0.1097 | 0.7756 | 0.8176 | 0.7961 | 0.9645 | | 0.145 | 3.0 | 858 | 0.1097 | 0.7957 | 0.8166 | 0.8060 | 0.9658 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0