judithrosell commited on
Commit
3f7bd69
·
1 Parent(s): 2719b79

End of training

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: medicalai/ClinicalBERT
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: ClinicalBERT_JNLPBA_NER
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # ClinicalBERT_JNLPBA_NER
19
+
20
+ This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1713
23
+ - Precision: 0.9452
24
+ - Recall: 0.9354
25
+ - F1: 0.9403
26
+ - Accuracy: 0.9427
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 2
50
+ - total_train_batch_size: 32
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 3
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.3475 | 1.0 | 582 | 0.1914 | 0.9330 | 0.9314 | 0.9322 | 0.9358 |
60
+ | 0.1835 | 2.0 | 1164 | 0.1746 | 0.9426 | 0.9332 | 0.9379 | 0.9408 |
61
+ | 0.158 | 3.0 | 1746 | 0.1713 | 0.9452 | 0.9354 | 0.9403 | 0.9427 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.35.2
67
+ - Pytorch 2.1.0+cu121
68
+ - Datasets 2.16.0
69
+ - Tokenizers 0.15.0