--- base_model: medicalai/ClinicalBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ClinicalBERT_JNLPBA_NER results: [] --- # ClinicalBERT_JNLPBA_NER This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1713 - Precision: 0.9452 - Recall: 0.9354 - F1: 0.9403 - Accuracy: 0.9427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3475 | 1.0 | 582 | 0.1914 | 0.9330 | 0.9314 | 0.9322 | 0.9358 | | 0.1835 | 2.0 | 1164 | 0.1746 | 0.9426 | 0.9332 | 0.9379 | 0.9408 | | 0.158 | 3.0 | 1746 | 0.1713 | 0.9452 | 0.9354 | 0.9403 | 0.9427 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0