--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: SciBERT_BioNLP13CG_NER_new results: [] --- # SciBERT_BioNLP13CG_NER_new This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1760 - Precision: 0.9560 - Recall: 0.9595 - F1: 0.9577 - Accuracy: 0.9560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 191 | 0.1970 | 0.9469 | 0.9507 | 0.9488 | 0.9474 | | No log | 2.0 | 382 | 0.1724 | 0.9544 | 0.9584 | 0.9564 | 0.9551 | | 0.2509 | 3.0 | 573 | 0.1760 | 0.9560 | 0.9595 | 0.9577 | 0.9560 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0