Upload 12 files
Browse files- README.md +49 -0
- model_head.pkl +2 -2
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
pipeline_tag: text-classification
|
8 |
+
---
|
9 |
+
|
10 |
+
# ../data/models/model_test_onlykeyword
|
11 |
+
|
12 |
+
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
|
13 |
+
|
14 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
15 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
16 |
+
|
17 |
+
## Usage
|
18 |
+
|
19 |
+
To use this model for inference, first install the SetFit library:
|
20 |
+
|
21 |
+
```bash
|
22 |
+
python -m pip install setfit
|
23 |
+
```
|
24 |
+
|
25 |
+
You can then run inference as follows:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from setfit import SetFitModel
|
29 |
+
|
30 |
+
# Download from Hub and run inference
|
31 |
+
model = SetFitModel.from_pretrained("../data/models/model_test_onlykeyword")
|
32 |
+
# Run inference
|
33 |
+
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
|
34 |
+
```
|
35 |
+
|
36 |
+
## BibTeX entry and citation info
|
37 |
+
|
38 |
+
```bibtex
|
39 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
40 |
+
doi = {10.48550/ARXIV.2209.11055},
|
41 |
+
url = {https://arxiv.org/abs/2209.11055},
|
42 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
43 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
44 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
45 |
+
publisher = {arXiv},
|
46 |
+
year = {2022},
|
47 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
48 |
+
}
|
49 |
+
```
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d45fb68a71f833c76e5c06a72f7f3b5b9c12cb07d33401e8ccd116e0c3ccd0b5
|
3 |
+
size 3855
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 470683437
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09f80e33b19e102ff458d7b36c31101f13357aa77cd1fd7c97783b0c9dbcd63f
|
3 |
size 470683437
|