fofr-sdxl-emoji / handler.py
julien-c's picture
julien-c HF staff
remove bg
35143eb verified
from typing import Dict, List, Any
import torch
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline
from safetensors.torch import load_file
from transformers import pipeline
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device ~>", device)
class EndpointHandler:
def __init__(self, path=""):
print("path ~>", path)
self.pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16 if device.type == "cuda" else None,
variant="fp16",
).to(device)
self.pipe.load_lora_weights("SvenN/sdxl-emoji", weight_name="lora.safetensors")
self.pipe.fuse_lora(lora_scale=0.6)
embedding_path = hf_hub_download(
repo_id="SvenN/sdxl-emoji", filename="embeddings.pti", repo_type="model"
)
state_dict = load_file(embedding_path)
self.pipe.load_textual_inversion(
state_dict["text_encoders_0"],
token=["<s0>", "<s1>"],
text_encoder=self.pipe.text_encoder,
tokenizer=self.pipe.tokenizer,
)
self.pipe.load_textual_inversion(
state_dict["text_encoders_1"],
token=["<s0>", "<s1>"],
text_encoder=self.pipe.text_encoder_2,
tokenizer=self.pipe.tokenizer_2,
)
self.remove_bg = pipeline(
"image-segmentation",
model="briaai/RMBG-1.4",
device=device,
revision="22532afbdabdc36b2d30a334076720ac72a06f83",
trust_remote_code=True,
)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. base64 encoded image
"""
inputs = data.pop("inputs", data)
# Automatically add trigger tokens to the beginning of the prompt
images = self.pipe(inputs, **data["parameters"]).images
image = images[0]
image_no_bg = self.remove_bg(image)
return image_no_bg
if __name__ == "__main__":
handler = EndpointHandler()
print(handler)
output = handler({"inputs": "emoji of a tiger face, white background"})
print(output)