Native diffusers textual embeddings loading
Browse files- handler.py +4 -6
handler.py
CHANGED
@@ -5,7 +5,6 @@ from huggingface_hub import hf_hub_download
|
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import base64
|
7 |
from io import BytesIO
|
8 |
-
from cog_sdxl.dataset_and_utils import TokenEmbeddingsHandler
|
9 |
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -24,15 +23,14 @@ class EndpointHandler:
|
|
24 |
|
25 |
self.pipe.load_lora_weights("SvenN/sdxl-emoji", weight_name="lora.safetensors")
|
26 |
self.pipe.fuse_lora()
|
27 |
-
|
28 |
-
text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
|
29 |
-
tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
|
30 |
|
31 |
embedding_path = hf_hub_download(
|
32 |
repo_id="SvenN/sdxl-emoji", filename="embeddings.pti", repo_type="model"
|
33 |
)
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
|
37 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
38 |
"""
|
|
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import base64
|
7 |
from io import BytesIO
|
|
|
8 |
|
9 |
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
23 |
|
24 |
self.pipe.load_lora_weights("SvenN/sdxl-emoji", weight_name="lora.safetensors")
|
25 |
self.pipe.fuse_lora()
|
|
|
|
|
|
|
26 |
|
27 |
embedding_path = hf_hub_download(
|
28 |
repo_id="SvenN/sdxl-emoji", filename="embeddings.pti", repo_type="model"
|
29 |
)
|
30 |
+
state_dict = load_file(embedding_path)
|
31 |
+
|
32 |
+
self.pipe.load_textual_inversion(state_dict["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
|
33 |
+
self.pipe.load_textual_inversion(state_dict["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
|
34 |
|
35 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
36 |
"""
|