File size: 1,067 Bytes
1e39f64 cd7db8d 4922acf cd7db8d 1e39f64 4658d25 13c145a 02bc9f2 69f411d 02bc9f2 13c145a 4658d25 1e39f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
pipeline_tag: text-generation
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
tags:
- pytorch
- llama-2
datasets:
- timdettmers/openassistant-guanaco
---
This model was fine-tuned using 4-bit QLoRa, following the instructions in https://huggingface.co/blog/llama2#fine-tuning-with-peft.
The dataset includes 10k prompts.
I used a Amazon EC2 g5.xlarge instance (1xA10G GPU), with the Deep Learning AMI for PyTorch.
Training time was about 10 hours. On-demand price is about $10, which can easily be reduced to about $3 with EC2 Spot Instances.
The full log is included, as well as a simple inference script.
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0
|