|
import random, sys, argparse, os, logging, torch |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments |
|
from sklearn.metrics import accuracy_score, precision_recall_fscore_support |
|
from datasets import load_from_disk |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument("--epochs", type=int, default=3) |
|
parser.add_argument("--train-batch-size", type=int, default=32) |
|
parser.add_argument("--eval-batch-size", type=int, default=64) |
|
parser.add_argument("--save-strategy", type=str, default='no') |
|
parser.add_argument("--save-steps", type=int, default=500) |
|
parser.add_argument("--model-name", type=str) |
|
parser.add_argument("--learning-rate", type=str, default=5e-5) |
|
|
|
|
|
parser.add_argument("--output-data-dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"]) |
|
parser.add_argument("--model-dir", type=str, default=os.environ["SM_MODEL_DIR"]) |
|
parser.add_argument("--n-gpus", type=str, default=os.environ["SM_NUM_GPUS"]) |
|
parser.add_argument("--train-dir", type=str, default=os.environ["SM_CHANNEL_TRAIN"]) |
|
parser.add_argument("--valid-dir", type=str, default=os.environ["SM_CHANNEL_VALID"]) |
|
|
|
args, _ = parser.parse_known_args() |
|
|
|
|
|
train_dataset = load_from_disk(args.train_dir) |
|
valid_dataset = load_from_disk(args.valid_dir) |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.info(f" loaded train_dataset length is: {len(train_dataset)}") |
|
logger.info(f" loaded valid_dataset length is: {len(valid_dataset)}") |
|
|
|
|
|
def compute_metrics(pred): |
|
labels = pred.label_ids |
|
preds = pred.predictions.argmax(-1) |
|
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average="binary") |
|
acc = accuracy_score(labels, preds) |
|
return {"accuracy": acc, "f1": f1, "precision": precision, "recall": recall} |
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(args.model_name) |
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir=args.model_dir, |
|
num_train_epochs=args.epochs, |
|
per_device_train_batch_size=args.train_batch_size, |
|
per_device_eval_batch_size=args.eval_batch_size, |
|
save_strategy=args.save_strategy, |
|
save_steps=args.save_steps, |
|
evaluation_strategy="epoch", |
|
logging_dir=f"{args.output_data_dir}/logs", |
|
learning_rate=float(args.learning_rate), |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
tokenizer=tokenizer, |
|
compute_metrics=compute_metrics, |
|
train_dataset=train_dataset, |
|
eval_dataset=valid_dataset, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
eval_result = trainer.evaluate(eval_dataset=valid_dataset) |
|
|
|
|
|
with open(os.path.join(args.output_data_dir, "eval_results.txt"), "w") as writer: |
|
print(f"***** Eval results *****") |
|
for key, value in sorted(eval_result.items()): |
|
writer.write(f"{key} = {value}\n") |
|
|
|
|
|
trainer.save_model(args.model_dir) |
|
|