File size: 4,457 Bytes
2add8d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-xlsr-korean-speech-emotion-recognition2_data_rebalance
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xlsr-korean-speech-emotion-recognition2_data_rebalance

This model is a fine-tuned version of [jungjongho/wav2vec2-large-xlsr-korean-demo-colab_epoch15](https://huggingface.co/jungjongho/wav2vec2-large-xlsr-korean-demo-colab_epoch15) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0124
- Accuracy: 0.9976

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1219        | 0.04  | 200  | 1.4543          | 0.5792   |
| 0.7585        | 0.08  | 400  | 0.6959          | 0.7301   |
| 0.5959        | 0.13  | 600  | 0.7356          | 0.7671   |
| 0.4048        | 0.17  | 800  | 0.2661          | 0.9128   |
| 0.3101        | 0.21  | 1000 | 0.2470          | 0.9291   |
| 0.2805        | 0.25  | 1200 | 0.2115          | 0.9394   |
| 0.2885        | 0.29  | 1400 | 0.3597          | 0.9152   |
| 0.1703        | 0.33  | 1600 | 0.3973          | 0.9142   |
| 0.1818        | 0.38  | 1800 | 0.2164          | 0.9543   |
| 0.1727        | 0.42  | 2000 | 0.1133          | 0.9730   |
| 0.1038        | 0.46  | 2200 | 0.0826          | 0.9851   |
| 0.1343        | 0.5   | 2400 | 0.0823          | 0.9820   |
| 0.1412        | 0.54  | 2600 | 0.0762          | 0.9830   |
| 0.1321        | 0.58  | 2800 | 0.0786          | 0.9806   |
| 0.0738        | 0.63  | 3000 | 0.1036          | 0.9810   |
| 0.0998        | 0.67  | 3200 | 0.1984          | 0.9640   |
| 0.1135        | 0.71  | 3400 | 0.0775          | 0.9841   |
| 0.0552        | 0.75  | 3600 | 0.0923          | 0.9827   |
| 0.0633        | 0.79  | 3800 | 0.0518          | 0.9900   |
| 0.0769        | 0.83  | 4000 | 0.0599          | 0.9875   |
| 0.1026        | 0.88  | 4200 | 0.0800          | 0.9841   |
| 0.0641        | 0.92  | 4400 | 0.2396          | 0.9606   |
| 0.1068        | 0.96  | 4600 | 0.0653          | 0.9875   |
| 0.0802        | 1.0   | 4800 | 0.0844          | 0.9855   |
| 0.0483        | 1.04  | 5000 | 0.0984          | 0.9834   |
| 0.0392        | 1.09  | 5200 | 0.1092          | 0.9813   |
| 0.0408        | 1.13  | 5400 | 0.0719          | 0.9900   |
| 0.0388        | 1.17  | 5600 | 0.0494          | 0.9903   |
| 0.0253        | 1.21  | 5800 | 0.1486          | 0.9751   |
| 0.0448        | 1.25  | 6000 | 0.1370          | 0.9782   |
| 0.0415        | 1.29  | 6200 | 0.0508          | 0.9907   |
| 0.0552        | 1.34  | 6400 | 0.0332          | 0.9941   |
| 0.065         | 1.38  | 6600 | 0.0479          | 0.9900   |
| 0.0391        | 1.42  | 6800 | 0.0470          | 0.9910   |
| 0.0339        | 1.46  | 7000 | 0.0550          | 0.9886   |
| 0.0525        | 1.5   | 7200 | 0.0389          | 0.9920   |
| 0.0393        | 1.54  | 7400 | 0.0543          | 0.9910   |
| 0.0488        | 1.59  | 7600 | 0.0205          | 0.9965   |
| 0.0253        | 1.63  | 7800 | 0.0240          | 0.9948   |
| 0.0438        | 1.67  | 8000 | 0.0308          | 0.9952   |
| 0.0291        | 1.71  | 8200 | 0.0160          | 0.9969   |
| 0.0235        | 1.75  | 8400 | 0.0124          | 0.9969   |
| 0.0061        | 1.8   | 8600 | 0.0191          | 0.9962   |
| 0.022         | 1.84  | 8800 | 0.0178          | 0.9958   |
| 0.0176        | 1.88  | 9000 | 0.0135          | 0.9965   |
| 0.0168        | 1.92  | 9200 | 0.0161          | 0.9969   |
| 0.0068        | 1.96  | 9400 | 0.0124          | 0.9976   |


### Framework versions

- Transformers 4.22.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.4.1.dev0
- Tokenizers 0.12.1