--- library_name: peft tags: - trl - dpo - generated_from_trainer base_model: allenai/tulu-2-7b model-index: - name: tulu2-7b-cost-UF-UI-5e-6 results: [] --- # tulu2-7b-cost-UF-UI-5e-6 This model is a fine-tuned version of [allenai/tulu-2-7b](https://huggingface.co/allenai/tulu-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8997 - Rewards/chosen: -4.7706 - Rewards/rejected: -5.6615 - Rewards/accuracies: 0.5878 - Rewards/margins: 0.8909 - Rewards/margins Max: 6.0317 - Rewards/margins Min: -2.9258 - Rewards/margins Std: 2.9022 - Logps/rejected: -885.2386 - Logps/chosen: -815.3665 - Logits/rejected: 1.3503 - Logits/chosen: 1.1567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Rewards/margins Max | Rewards/margins Min | Rewards/margins Std | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:-------------------:|:-------------------:|:-------------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.0983 | 1.0 | 2428 | 0.8997 | -4.7706 | -5.6615 | 0.5878 | 0.8909 | 6.0317 | -2.9258 | 2.9022 | -885.2386 | -815.3665 | 1.3503 | 1.1567 | ### Framework versions - PEFT 0.7.1 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2