BlackSamorez justheuristic commited on
Commit
4c53d47
1 Parent(s): 0ab711f

Create model card (#1)

Browse files

- Create model card (dc6871874c2cc635d34d0f61c47a7af2eda2b7a4)
- Update README.md (1e4dd958ec290ac197ff9c8869de42b7d7702bf4)
- Update README.md (8315dcabcaa219d38cbbbec76e5bbec947181186)
- Update README.md (4bd28af77e457999364dcce722348a84443737c6)


Co-authored-by: Yozh <justheuristic@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +29 -0
README.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - llama
5
+ - facebook
6
+ - meta
7
+ - llama-2
8
+ - conversational
9
+ - text-generation-inference
10
+ ---
11
+
12
+ An official quantization of [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118).
13
+
14
+
15
+ For this quantization, we used 1 codebook of 16 bits for groups of 8 weights.
16
+
17
+
18
+ | Model | AQLM scheme | WikiText 2 PPL | Model size, Gb | Hub link |
19
+ |------------|-------------|----------------|----------------|--------------------------------------------------------------------------|
20
+ | Llama-2-7b (this) | 1x16 | 5.68 | 2.4 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-7b-AQLM-PV-2Bit-1x16-hf) |
21
+ | Llama-2-7b | 2x8 | 5.90 | 2.2 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-7b-AQLM-PV-2Bit-2x8-hf) |
22
+ | Llama-2-13b| 1x16 | 5.05 | 4.1 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-13b-AQLM-PV-2Bit-1x16-hf)|
23
+ | Llama-2-70b| 1x16 | 3.78 | 18.8 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-70b-AQLM-PV-2Bit-1x16-hf)|
24
+
25
+ The 1x16g16 (1-bit) models are on the way, as soon as we update the inference lib with their respective kernels.
26
+
27
+ To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM).
28
+ The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.
29
+