File size: 3,840 Bytes
717b5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
tags:
- generated_from_trainer
model-index:
- name: vicuna-adv-robust-u50-sft-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vicuna-adv-robust-u50-sft-lora

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2125

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 0     | 0    | 2.4952          |
| 2.5615        | 1.09  | 1    | 2.5270          |
| 2.5615        | 1.09  | 1    | 2.5362          |
| 2.5615        | 3.03  | 2    | 2.5342          |
| 2.5615        | 4.12  | 3    | 2.2735          |
| 2.5615        | 4.12  | 3    | 2.3209          |
| 2.5615        | 6.06  | 4    | 2.1017          |
| 2.363         | 7.15  | 5    | 2.0121          |
| 2.363         | 7.15  | 5    | 2.0751          |
| 2.363         | 9.09  | 6    | 1.9646          |
| 2.363         | 9.09  | 6    | 1.8912          |
| 2.363         | 11.03 | 7    | 1.8100          |
| 2.363         | 12.12 | 8    | 1.8144          |
| 2.363         | 12.12 | 8    | 1.7983          |
| 2.363         | 14.06 | 9    | 1.7634          |
| 1.9009        | 15.15 | 10   | 1.7628          |
| 1.9009        | 15.15 | 10   | 1.7354          |
| 1.9009        | 17.09 | 11   | 1.7343          |
| 1.9009        | 17.09 | 11   | 1.7232          |
| 1.9009        | 19.03 | 12   | 1.6737          |
| 1.9009        | 20.12 | 13   | 1.6418          |
| 1.9009        | 20.12 | 13   | 1.6635          |
| 1.9009        | 22.06 | 14   | 1.6280          |
| 1.7031        | 23.15 | 15   | 1.6042          |
| 1.7031        | 23.15 | 15   | 1.6120          |
| 1.7031        | 25.09 | 16   | 1.5792          |
| 1.7031        | 25.09 | 16   | 1.6128          |
| 1.7031        | 27.03 | 17   | 1.5468          |
| 1.7031        | 28.12 | 18   | 1.5303          |
| 1.7031        | 28.12 | 18   | 1.5160          |
| 1.7031        | 30.06 | 19   | 1.5195          |
| 1.5968        | 31.15 | 20   | 1.5098          |
| 1.5968        | 31.15 | 20   | 1.4775          |
| 1.5968        | 33.09 | 21   | 1.4770          |
| 1.5968        | 33.09 | 21   | 1.4588          |
| 1.5968        | 35.03 | 22   | 1.4474          |
| 1.5968        | 36.12 | 23   | 1.4240          |
| 1.5968        | 36.12 | 23   | 1.4164          |
| 1.5968        | 38.06 | 24   | 1.4060          |
| 1.4776        | 39.15 | 25   | 1.3753          |
| 1.4776        | 39.15 | 25   | 1.3858          |
| 1.4776        | 41.09 | 26   | 1.3822          |
| 1.4776        | 41.09 | 26   | 1.3268          |
| 1.4776        | 43.03 | 27   | 1.3443          |
| 1.4776        | 44.12 | 28   | 1.3259          |
| 1.4776        | 44.12 | 28   | 1.3117          |
| 1.4776        | 46.06 | 29   | 1.3105          |
| 1.3585        | 47.15 | 30   | 1.2553          |
| 1.3585        | 47.15 | 30   | 1.2755          |
| 1.3585        | 49.09 | 31   | 1.2036          |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0a0+32f93b1
- Datasets 2.14.6
- Tokenizers 0.14.1