--- tags: - generated_from_trainer model-index: - name: vicuna-adv-robust-u50-sft-lora results: [] --- # vicuna-adv-robust-u50-sft-lora This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0 | 0 | 2.4952 | | 2.5615 | 1.09 | 1 | 2.5270 | | 2.5615 | 1.09 | 1 | 2.5362 | | 2.5615 | 3.03 | 2 | 2.5342 | | 2.5615 | 4.12 | 3 | 2.2735 | | 2.5615 | 4.12 | 3 | 2.3209 | | 2.5615 | 6.06 | 4 | 2.1017 | | 2.363 | 7.15 | 5 | 2.0121 | | 2.363 | 7.15 | 5 | 2.0751 | | 2.363 | 9.09 | 6 | 1.9646 | | 2.363 | 9.09 | 6 | 1.8912 | | 2.363 | 11.03 | 7 | 1.8100 | | 2.363 | 12.12 | 8 | 1.8144 | | 2.363 | 12.12 | 8 | 1.7983 | | 2.363 | 14.06 | 9 | 1.7634 | | 1.9009 | 15.15 | 10 | 1.7628 | | 1.9009 | 15.15 | 10 | 1.7354 | | 1.9009 | 17.09 | 11 | 1.7343 | | 1.9009 | 17.09 | 11 | 1.7232 | | 1.9009 | 19.03 | 12 | 1.6737 | | 1.9009 | 20.12 | 13 | 1.6418 | | 1.9009 | 20.12 | 13 | 1.6635 | | 1.9009 | 22.06 | 14 | 1.6280 | | 1.7031 | 23.15 | 15 | 1.6042 | | 1.7031 | 23.15 | 15 | 1.6120 | | 1.7031 | 25.09 | 16 | 1.5792 | | 1.7031 | 25.09 | 16 | 1.6128 | | 1.7031 | 27.03 | 17 | 1.5468 | | 1.7031 | 28.12 | 18 | 1.5303 | | 1.7031 | 28.12 | 18 | 1.5160 | | 1.7031 | 30.06 | 19 | 1.5195 | | 1.5968 | 31.15 | 20 | 1.5098 | | 1.5968 | 31.15 | 20 | 1.4775 | | 1.5968 | 33.09 | 21 | 1.4770 | | 1.5968 | 33.09 | 21 | 1.4588 | | 1.5968 | 35.03 | 22 | 1.4474 | | 1.5968 | 36.12 | 23 | 1.4240 | | 1.5968 | 36.12 | 23 | 1.4164 | | 1.5968 | 38.06 | 24 | 1.4060 | | 1.4776 | 39.15 | 25 | 1.3753 | | 1.4776 | 39.15 | 25 | 1.3858 | | 1.4776 | 41.09 | 26 | 1.3822 | | 1.4776 | 41.09 | 26 | 1.3268 | | 1.4776 | 43.03 | 27 | 1.3443 | | 1.4776 | 44.12 | 28 | 1.3259 | | 1.4776 | 44.12 | 28 | 1.3117 | | 1.4776 | 46.06 | 29 | 1.3105 | | 1.3585 | 47.15 | 30 | 1.2553 | | 1.3585 | 47.15 | 30 | 1.2755 | | 1.3585 | 49.09 | 31 | 1.2036 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0a0+32f93b1 - Datasets 2.14.6 - Tokenizers 0.14.1