File size: 22,181 Bytes
60042c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
#api for 240604 release version by Xiaokai
import os
import sys
import json
import re
import time
import librosa
import torch
import numpy as np
import torch.nn.functional as F
import torchaudio.transforms as tat
import sounddevice as sd
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import threading
import uvicorn
import logging
from multiprocessing import Queue, Process, cpu_count, freeze_support

# Initialize the logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Define FastAPI app
app = FastAPI()

class GUIConfig:
    def __init__(self) -> None:
        self.pth_path: str = ""
        self.index_path: str = ""
        self.pitch: int = 0
        self.formant: float = 0.0
        self.sr_type: str = "sr_model"
        self.block_time: float = 0.25  # s
        self.threhold: int = -60
        self.crossfade_time: float = 0.05
        self.extra_time: float = 2.5
        self.I_noise_reduce: bool = False
        self.O_noise_reduce: bool = False
        self.use_pv: bool = False
        self.rms_mix_rate: float = 0.0
        self.index_rate: float = 0.0
        self.n_cpu: int = 4
        self.f0method: str = "fcpe"
        self.sg_input_device: str = ""
        self.sg_output_device: str = ""

class ConfigData(BaseModel):
    pth_path: str
    index_path: str
    sg_input_device: str
    sg_output_device: str
    threhold: int = -60
    pitch: int = 0
    formant: float = 0.0
    index_rate: float = 0.3
    rms_mix_rate: float = 0.0
    block_time: float = 0.25
    crossfade_length: float = 0.05
    extra_time: float = 2.5
    n_cpu: int = 4
    I_noise_reduce: bool = False
    O_noise_reduce: bool = False
    use_pv: bool = False
    f0method: str = "fcpe"

class Harvest(Process):
    def __init__(self, inp_q, opt_q):
        super(Harvest, self).__init__()
        self.inp_q = inp_q
        self.opt_q = opt_q

    def run(self):
        import numpy as np
        import pyworld
        while True:
            idx, x, res_f0, n_cpu, ts = self.inp_q.get()
            f0, t = pyworld.harvest(
                x.astype(np.double),
                fs=16000,
                f0_ceil=1100,
                f0_floor=50,
                frame_period=10,
            )
            res_f0[idx] = f0
            if len(res_f0.keys()) >= n_cpu:
                self.opt_q.put(ts)

class AudioAPI:
    def __init__(self) -> None:
        self.gui_config = GUIConfig()
        self.config = None  # Initialize Config object as None
        self.flag_vc = False
        self.function = "vc"
        self.delay_time = 0
        self.rvc = None  # Initialize RVC object as None
        self.inp_q = None
        self.opt_q = None
        self.n_cpu = min(cpu_count(), 8)

    def initialize_queues(self):
        self.inp_q = Queue()
        self.opt_q = Queue()
        for _ in range(self.n_cpu):
            p = Harvest(self.inp_q, self.opt_q)
            p.daemon = True
            p.start()

    def load(self):
        input_devices, output_devices, _, _ = self.get_devices()
        try:
            with open("configs/config.json", "r", encoding='utf-8') as j:
                data = json.load(j)
                if data["sg_input_device"] not in input_devices:
                    data["sg_input_device"] = input_devices[sd.default.device[0]]
                if data["sg_output_device"] not in output_devices:
                    data["sg_output_device"] = output_devices[sd.default.device[1]]
        except Exception as e:
            logger.error(f"Failed to load configuration: {e}")
            with open("configs/config.json", "w", encoding='utf-8') as j:
                data = {
                    "pth_path": "",
                    "index_path": "",
                    "sg_input_device": input_devices[sd.default.device[0]],
                    "sg_output_device": output_devices[sd.default.device[1]],
                    "threhold": -60,
                    "pitch": 0,
                    "formant": 0.0,
                    "index_rate": 0,
                    "rms_mix_rate": 0,
                    "block_time": 0.25,
                    "crossfade_length": 0.05,
                    "extra_time": 2.5,
                    "n_cpu": 4,
                    "f0method": "fcpe",
                    "use_jit": False,
                    "use_pv": False,
                }
                json.dump(data, j, ensure_ascii=False)
        return data

    def set_values(self, values):
        logger.info(f"Setting values: {values}")
        if not values.pth_path.strip():
            raise HTTPException(status_code=400, detail="Please select a .pth file")
        if not values.index_path.strip():
            raise HTTPException(status_code=400, detail="Please select an index file")
        self.set_devices(values.sg_input_device, values.sg_output_device)
        self.config.use_jit = False
        self.gui_config.pth_path = values.pth_path
        self.gui_config.index_path = values.index_path
        self.gui_config.threhold = values.threhold
        self.gui_config.pitch = values.pitch
        self.gui_config.formant = values.formant
        self.gui_config.block_time = values.block_time
        self.gui_config.crossfade_time = values.crossfade_length
        self.gui_config.extra_time = values.extra_time
        self.gui_config.I_noise_reduce = values.I_noise_reduce
        self.gui_config.O_noise_reduce = values.O_noise_reduce
        self.gui_config.rms_mix_rate = values.rms_mix_rate
        self.gui_config.index_rate = values.index_rate
        self.gui_config.n_cpu = values.n_cpu
        self.gui_config.use_pv = values.use_pv
        self.gui_config.f0method = values.f0method
        return True

    def start_vc(self):
        torch.cuda.empty_cache()
        self.flag_vc = True
        self.rvc = rvc_for_realtime.RVC(
            self.gui_config.pitch,
            self.gui_config.pth_path,
            self.gui_config.index_path,
            self.gui_config.index_rate,
            self.gui_config.n_cpu,
            self.inp_q,
            self.opt_q,
            self.config,
            self.rvc if self.rvc else None,
        )
        self.gui_config.samplerate = (
            self.rvc.tgt_sr
            if self.gui_config.sr_type == "sr_model"
            else self.get_device_samplerate()
        )
        self.zc = self.gui_config.samplerate // 100
        self.block_frame = (
            int(
                np.round(
                    self.gui_config.block_time
                    * self.gui_config.samplerate
                    / self.zc
                )
            )
            * self.zc
        )
        self.block_frame_16k = 160 * self.block_frame // self.zc
        self.crossfade_frame = (
            int(
                np.round(
                    self.gui_config.crossfade_time
                    * self.gui_config.samplerate
                    / self.zc
                )
            )
            * self.zc
        )
        self.sola_buffer_frame = min(self.crossfade_frame, 4 * self.zc)
        self.sola_search_frame = self.zc
        self.extra_frame = (
            int(
                np.round(
                    self.gui_config.extra_time
                    * self.gui_config.samplerate
                    / self.zc
                )
            )
            * self.zc
        )
        self.input_wav = torch.zeros(
            self.extra_frame
            + self.crossfade_frame
            + self.sola_search_frame
            + self.block_frame,
            device=self.config.device,
            dtype=torch.float32,
        )
        self.input_wav_denoise = self.input_wav.clone()
        self.input_wav_res = torch.zeros(
            160 * self.input_wav.shape[0] // self.zc,
            device=self.config.device,
            dtype=torch.float32,
        )
        self.rms_buffer = np.zeros(4 * self.zc, dtype="float32")
        self.sola_buffer = torch.zeros(
            self.sola_buffer_frame, device=self.config.device, dtype=torch.float32
        )
        self.nr_buffer = self.sola_buffer.clone()
        self.output_buffer = self.input_wav.clone()
        self.skip_head = self.extra_frame // self.zc
        self.return_length = (
            self.block_frame + self.sola_buffer_frame + self.sola_search_frame
        ) // self.zc
        self.fade_in_window = (
            torch.sin(
                0.5
                * np.pi
                * torch.linspace(
                    0.0,
                    1.0,
                    steps=self.sola_buffer_frame,
                    device=self.config.device,
                    dtype=torch.float32,
                )
            )
            ** 2
        )
        self.fade_out_window = 1 - self.fade_in_window
        self.resampler = tat.Resample(
            orig_freq=self.gui_config.samplerate,
            new_freq=16000,
            dtype=torch.float32,
        ).to(self.config.device)
        if self.rvc.tgt_sr != self.gui_config.samplerate:
            self.resampler2 = tat.Resample(
                orig_freq=self.rvc.tgt_sr,
                new_freq=self.gui_config.samplerate,
                dtype=torch.float32,
            ).to(self.config.device)
        else:
            self.resampler2 = None
        self.tg = TorchGate(
            sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9
        ).to(self.config.device)
        thread_vc = threading.Thread(target=self.soundinput)
        thread_vc.start()

    def soundinput(self):
        channels = 1 if sys.platform == "darwin" else 2
        with sd.Stream(
            channels=channels,
            callback=self.audio_callback,
            blocksize=self.block_frame,
            samplerate=self.gui_config.samplerate,
            dtype="float32",
        ) as stream:
            global stream_latency
            stream_latency = stream.latency[-1]
            while self.flag_vc:
                time.sleep(self.gui_config.block_time)
                logger.info("Audio block passed.")
        logger.info("Ending VC")

    def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status):
        start_time = time.perf_counter()
        indata = librosa.to_mono(indata.T)
        if self.gui_config.threhold > -60:
            indata = np.append(self.rms_buffer, indata)
            rms = librosa.feature.rms(y=indata, frame_length=4 * self.zc, hop_length=self.zc)[:, 2:]
            self.rms_buffer[:] = indata[-4 * self.zc :]
            indata = indata[2 * self.zc - self.zc // 2 :]
            db_threhold = (
                librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold
            )
            for i in range(db_threhold.shape[0]):
                if db_threhold[i]:
                    indata[i * self.zc : (i + 1) * self.zc] = 0
            indata = indata[self.zc // 2 :]
        self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone()
        self.input_wav[-indata.shape[0] :] = torch.from_numpy(indata).to(self.config.device)
        self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone()
        # input noise reduction and resampling
        if self.gui_config.I_noise_reduce:
            self.input_wav_denoise[: -self.block_frame] = self.input_wav_denoise[self.block_frame :].clone()
            input_wav = self.input_wav[-self.sola_buffer_frame - self.block_frame :]
            input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0)).squeeze(0)
            input_wav[: self.sola_buffer_frame] *= self.fade_in_window
            input_wav[: self.sola_buffer_frame] += self.nr_buffer * self.fade_out_window
            self.input_wav_denoise[-self.block_frame :] = input_wav[: self.block_frame]
            self.nr_buffer[:] = input_wav[self.block_frame :]
            self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(
                self.input_wav_denoise[-self.block_frame - 2 * self.zc :]
            )[160:]
        else:
            self.input_wav_res[-160 * (indata.shape[0] // self.zc + 1) :] = (
                self.resampler(self.input_wav[-indata.shape[0] - 2 * self.zc :])[160:]
            )
        # infer
        if self.function == "vc":
            infer_wav = self.rvc.infer(
                self.input_wav_res,
                self.block_frame_16k,
                self.skip_head,
                self.return_length,
                self.gui_config.f0method,
            )
            if self.resampler2 is not None:
                infer_wav = self.resampler2(infer_wav)
        elif self.gui_config.I_noise_reduce:
            infer_wav = self.input_wav_denoise[self.extra_frame :].clone()
        else:
            infer_wav = self.input_wav[self.extra_frame :].clone()
        # output noise reduction
        if self.gui_config.O_noise_reduce and self.function == "vc":
            self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone()
            self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :]
            infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0)
        # volume envelop mixing
        if self.gui_config.rms_mix_rate < 1 and self.function == "vc":
            if self.gui_config.I_noise_reduce:
                input_wav = self.input_wav_denoise[self.extra_frame :]
            else:
                input_wav = self.input_wav[self.extra_frame :]
            rms1 = librosa.feature.rms(
                y=input_wav[: infer_wav.shape[0]].cpu().numpy(),
                frame_length=4 * self.zc,
                hop_length=self.zc,
            )
            rms1 = torch.from_numpy(rms1).to(self.config.device)
            rms1 = F.interpolate(
                rms1.unsqueeze(0),
                size=infer_wav.shape[0] + 1,
                mode="linear",
                align_corners=True,
            )[0, 0, :-1]
            rms2 = librosa.feature.rms(
                y=infer_wav[:].cpu().numpy(),
                frame_length=4 * self.zc,
                hop_length=self.zc,
            )
            rms2 = torch.from_numpy(rms2).to(self.config.device)
            rms2 = F.interpolate(
                rms2.unsqueeze(0),
                size=infer_wav.shape[0] + 1,
                mode="linear",
                align_corners=True,
            )[0, 0, :-1]
            rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
            infer_wav *= torch.pow(
                rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate)
            )
        # SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
        conv_input = infer_wav[None, None, : self.sola_buffer_frame + self.sola_search_frame]
        cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
        cor_den = torch.sqrt(
            F.conv1d(
                conv_input**2,
                torch.ones(1, 1, self.sola_buffer_frame, device=self.config.device),
            )
            + 1e-8
        )
        if sys.platform == "darwin":
            _, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
            sola_offset = sola_offset.item()
        else:
            sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
        logger.info(f"sola_offset = {sola_offset}")
        infer_wav = infer_wav[sola_offset:]
        if "privateuseone" in str(self.config.device) or not self.gui_config.use_pv:
            infer_wav[: self.sola_buffer_frame] *= self.fade_in_window
            infer_wav[: self.sola_buffer_frame] += self.sola_buffer * self.fade_out_window
        else:
            infer_wav[: self.sola_buffer_frame] = phase_vocoder(
                self.sola_buffer,
                infer_wav[: self.sola_buffer_frame],
                self.fade_out_window,
                self.fade_in_window,
            )
        self.sola_buffer[:] = infer_wav[
            self.block_frame : self.block_frame + self.sola_buffer_frame
        ]
        if sys.platform == "darwin":
            outdata[:] = infer_wav[: self.block_frame].cpu().numpy()[:, np.newaxis]
        else:
            outdata[:] = infer_wav[: self.block_frame].repeat(2, 1).t().cpu().numpy()
        total_time = time.perf_counter() - start_time
        logger.info(f"Infer time: {total_time:.2f}")

    def get_devices(self, update: bool = True):
        if update:
            sd._terminate()
            sd._initialize()
        devices = sd.query_devices()
        hostapis = sd.query_hostapis()
        for hostapi in hostapis:
            for device_idx in hostapi["devices"]:
                devices[device_idx]["hostapi_name"] = hostapi["name"]
        input_devices = [
            f"{d['name']} ({d['hostapi_name']})"
            for d in devices
            if d["max_input_channels"] > 0
        ]
        output_devices = [
            f"{d['name']} ({d['hostapi_name']})"
            for d in devices
            if d["max_output_channels"] > 0
        ]
        input_devices_indices = [
            d["index"] if "index" in d else d["name"]
            for d in devices
            if d["max_input_channels"] > 0
        ]
        output_devices_indices = [
            d["index"] if "index" in d else d["name"]
            for d in devices
            if d["max_output_channels"] > 0
        ]
        return (
            input_devices,
            output_devices,
            input_devices_indices,
            output_devices_indices,
        )

    def set_devices(self, input_device, output_device):
        (
            input_devices,
            output_devices,
            input_device_indices,
            output_device_indices,
        ) = self.get_devices()
        logger.debug(f"Available input devices: {input_devices}")
        logger.debug(f"Available output devices: {output_devices}")
        logger.debug(f"Selected input device: {input_device}")
        logger.debug(f"Selected output device: {output_device}")

        if input_device not in input_devices:
            logger.error(f"Input device '{input_device}' is not in the list of available devices")
            raise HTTPException(status_code=400, detail=f"Input device '{input_device}' is not available")
        
        if output_device not in output_devices:
            logger.error(f"Output device '{output_device}' is not in the list of available devices")
            raise HTTPException(status_code=400, detail=f"Output device '{output_device}' is not available")

        sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
        sd.default.device[1] = output_device_indices[output_devices.index(output_device)]
        logger.info(f"Input device set to {sd.default.device[0]}: {input_device}")
        logger.info(f"Output device set to {sd.default.device[1]}: {output_device}")

audio_api = AudioAPI()

@app.get("/inputDevices", response_model=list)
def get_input_devices():
    try:
        input_devices, _, _, _ = audio_api.get_devices()
        return input_devices
    except Exception as e:
        logger.error(f"Failed to get input devices: {e}")
        raise HTTPException(status_code=500, detail="Failed to get input devices")

@app.get("/outputDevices", response_model=list)
def get_output_devices():
    try:
        _, output_devices, _, _ = audio_api.get_devices()
        return output_devices
    except Exception as e:
        logger.error(f"Failed to get output devices: {e}")
        raise HTTPException(status_code=500, detail="Failed to get output devices")

@app.post("/config")
def configure_audio(config_data: ConfigData):
    try:
        logger.info(f"Configuring audio with data: {config_data}")
        if audio_api.set_values(config_data):
            settings = config_data.dict()
            settings["use_jit"] = False
            with open("configs/config.json", "w", encoding='utf-8') as j:
                json.dump(settings, j, ensure_ascii=False)
            logger.info("Configuration set successfully")
            return {"message": "Configuration set successfully"}
    except HTTPException as e:
        logger.error(f"Configuration error: {e.detail}")
        raise
    except Exception as e:
        logger.error(f"Configuration failed: {e}")
        raise HTTPException(status_code=400, detail=f"Configuration failed: {e}")

@app.post("/start")
def start_conversion():
    try:
        if not audio_api.flag_vc:
            audio_api.start_vc()
            return {"message": "Audio conversion started"}
        else:
            logger.warning("Audio conversion already running")
            raise HTTPException(status_code=400, detail="Audio conversion already running")
    except HTTPException as e:
        logger.error(f"Start conversion error: {e.detail}")
        raise
    except Exception as e:
        logger.error(f"Failed to start conversion: {e}")
        raise HTTPException(status_code=500, detail="Failed to start conversion: {e}")

@app.post("/stop")
def stop_conversion():
    try:
        if audio_api.flag_vc:
            audio_api.flag_vc = False
            global stream_latency
            stream_latency = -1
            return {"message": "Audio conversion stopped"}
        else:
            logger.warning("Audio conversion not running")
            raise HTTPException(status_code=400, detail="Audio conversion not running")
    except HTTPException as e:
        logger.error(f"Stop conversion error: {e.detail}")
        raise
    except Exception as e:
        logger.error(f"Failed to stop conversion: {e}")
        raise HTTPException(status_code=500, detail="Failed to stop conversion: {e}")

if __name__ == "__main__":
    if sys.platform == "win32":
        freeze_support()
    load_dotenv()
    os.environ["OMP_NUM_THREADS"] = "4"
    if sys.platform == "darwin":
        os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
    from tools.torchgate import TorchGate
    import tools.rvc_for_realtime as rvc_for_realtime
    from configs.config import Config
    audio_api.config = Config()
    audio_api.initialize_queues()
    uvicorn.run(app, host="0.0.0.0", port=6242)