jwright94's picture
retrained lander
4fbd6bf
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f84587bfe20>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f84587bfeb0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f84587bff40>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f84587cc040>",
"_build": "<function ActorCriticPolicy._build at 0x7f84587cc0d0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f84587cc160>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f84587cc1f0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f84587cc280>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f84587cc310>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f84587cc3a0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f84587cc430>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f84587cc4c0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f84587c8c80>"
},
"verbose": 0,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 2031616,
"_total_timesteps": 2000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1673933699538720020,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoiCr78+aQ/oY0AvyoNC7+BLxe+rccgvgAAAAAAAAAAM+d+PS3Buz5iJRy80aCmvts6XT1TqDW8AAAAAAAAAADmYe09H/iYP4zSBT9JLRi/4Qo1Pp31rz4AAAAAAAAAAE2C9b1pq4A/Vd50vbVLJL/aewW+n24MPgAAAAAAAAAAQN2FPS21Fz7YmSa+LkmovjeEOL2NzXS6AAAAAAAAAAAzrGi9ZUk8P3dfzLwd9Qm/qi0zvdKktzwAAAAAAAAAANrlor220zs9jHoDPj/xc756W+k8zqehPAAAAAAAAAAAjUSRvaQLb7sk/rQ8sEhqO2jdprwSBWo8AACAPwAAgD+a4C694diKuobRBzu82cqxh0LeuIOg/LMAAIA/AACAP1r4Rr4MHOI+uj1EPtUf6L7C2Ja9vnHnPQAAAAAAAAAAZhKouziy17vOrau95A1Mvl5ApruK738+AACAPwAAgD/za0y+2XhEP0ddJz0fUwe/3X9TvpCVGj4AAAAAAAAAAKC0cL5r3gg/0/S7Pg6C+76ECWu9gjaAPgAAAAAAAAAAs/PjPb6klj26YlS+q3STvjZWGL0Npzq9AAAAAAAAAABmkr+9k4m2PzO0+L5HUkK+XiWvvbsoWL4AAAAAAAAAADMlvz0SzII8nJYCvjINZ77+Quu8aHPpuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjXvzG2YzcECUhpRSlIwBbJRL/4wBdJRHQKT0qPV/c351fZQoaAZoCWgPQwgBa9WuybJxQJSGlFKUaBVLtmgWR0Ck9K7wKBuodX2UKGgGaAloD0MI7X4V4Pt1ckCUhpRSlGgVS9BoFkdApPTjklu3t3V9lChoBmgJaA9DCOtU+Z6ReXJAlIaUUpRoFUvTaBZHQKT07lnyup11fZQoaAZoCWgPQwi7e4DuS6dvQJSGlFKUaBVLz2gWR0Ck9PWf029+dX2UKGgGaAloD0MI9iaG5OSOb0CUhpRSlGgVS9toFkdApPUbb1yvLXV9lChoBmgJaA9DCMh6avVVJXNAlIaUUpRoFUvGaBZHQKT1LUWl/H51fZQoaAZoCWgPQwh4KXXJOMZxQJSGlFKUaBVL7WgWR0Ck9ViHIp6QdX2UKGgGaAloD0MIpFAWvn5ocUCUhpRSlGgVS9VoFkdApPVpO8Cgb3V9lChoBmgJaA9DCDGyZI4lsnJAlIaUUpRoFUvlaBZHQKT1hvJA+px1fZQoaAZoCWgPQwjY9KCg1GNyQJSGlFKUaBVLxWgWR0Ck9ZOZ9d/sdX2UKGgGaAloD0MI4KC9+njKcECUhpRSlGgVS75oFkdApPWk01qFiHV9lChoBmgJaA9DCLFqEOa2FXFAlIaUUpRoFUvCaBZHQKT1o90Rvm51fZQoaAZoCWgPQwjAP6VKVHVzQJSGlFKUaBVL82gWR0Ck9bDXe3x4dX2UKGgGaAloD0MICTNt/8ojcECUhpRSlGgVS95oFkdApPXYZjx0+3V9lChoBmgJaA9DCA8O9iaGPXJAlIaUUpRoFUvcaBZHQKT2Fj5Kvmp1fZQoaAZoCWgPQwi8y0V854JzQJSGlFKUaBVLyGgWR0Ck9lgSWZ7YdX2UKGgGaAloD0MIOUcdHVefbUCUhpRSlGgVS9FoFkdApPZlqDbrT3V9lChoBmgJaA9DCIxkj1Azl29AlIaUUpRoFUu9aBZHQKT2ey1uzhR1fZQoaAZoCWgPQwjuQQjIF8tyQJSGlFKUaBVLwGgWR0Ck9oe/5+H8dX2UKGgGaAloD0MIgLvs110rcUCUhpRSlGgVS89oFkdApPaXQrtmc3V9lChoBmgJaA9DCPp8lBEXq3NAlIaUUpRoFUveaBZHQKT27O9FnZl1fZQoaAZoCWgPQwhAhLhy9gh0QJSGlFKUaBVL12gWR0Ck9u+b3Gn5dX2UKGgGaAloD0MI5ZoCmd3gc0CUhpRSlGgVS91oFkdApPcs01qFiHV9lChoBmgJaA9DCPUPIhkyh3JAlIaUUpRoFUvGaBZHQKT3NkRzzVd1fZQoaAZoCWgPQwinA1lP7ZtwQJSGlFKUaBVLvWgWR0Ck90RKHwgDdX2UKGgGaAloD0MIcCcR4d+eckCUhpRSlGgVS9JoFkdApPdG3fAKv3V9lChoBmgJaA9DCJNwIY+gnXBAlIaUUpRoFUvgaBZHQKT3SjTKDCh1fZQoaAZoCWgPQwhhUKbR5OpuQJSGlFKUaBVL1GgWR0Ck92bjLjgidX2UKGgGaAloD0MIJTs2ArH9cUCUhpRSlGgVS+FoFkdApPeA7kn1F3V9lChoBmgJaA9DCItPATBeonFAlIaUUpRoFUvbaBZHQKT3qxASnLt1fZQoaAZoCWgPQwiASpUou9NxQJSGlFKUaBVLzmgWR0Ck989h7VridX2UKGgGaAloD0MICHb8FwgockCUhpRSlGgVS7FoFkdApPfU4DLbH3V9lChoBmgJaA9DCB0EHa2q7HFAlIaUUpRoFUvFaBZHQKT4KXb/Ot51fZQoaAZoCWgPQwh6ceKr3U1xQJSGlFKUaBVLwWgWR0Ck+EB+vyLAdX2UKGgGaAloD0MIgjgPJ/Cvc0CUhpRSlGgVS9poFkdApPhDnzQNTnV9lChoBmgJaA9DCAoS293D8nBAlIaUUpRoFUu9aBZHQKT4izsQd0d1fZQoaAZoCWgPQwgaahSSjOJwQJSGlFKUaBVLxmgWR0Ck+KGcnVoYdX2UKGgGaAloD0MI3o5wWnBFckCUhpRSlGgVS/toFkdApPirNMXaanV9lChoBmgJaA9DCEYMO4zJym5AlIaUUpRoFUu+aBZHQKT4zwZwXIl1fZQoaAZoCWgPQwhKQEzCBQhvQJSGlFKUaBVL0mgWR0Ck+PN3np0PdX2UKGgGaAloD0MItjAL7dyJcUCUhpRSlGgVS8toFkdApPj3Nu+AVnV9lChoBmgJaA9DCMwnK4Yr329AlIaUUpRoFUvHaBZHQKT5EIF/x2B1fZQoaAZoCWgPQwgu46YGWqpzQJSGlFKUaBVL32gWR0Ck+SIMz/IbdX2UKGgGaAloD0MI8fCeA8s5ckCUhpRSlGgVS+poFkdApPk63gDRt3V9lChoBmgJaA9DCFyQLcsXd3FAlIaUUpRoFUvdaBZHQKT5WxASnLt1fZQoaAZoCWgPQwirQC0GjxtxQJSGlFKUaBVL1WgWR0Ck+XLYf4h2dX2UKGgGaAloD0MIYORlTWz/cUCUhpRSlGgVS8JoFkdApPl2ZssQNHV9lChoBmgJaA9DCOy/zk3boHFAlIaUUpRoFUvaaBZHQKT5pQkX1rZ1fZQoaAZoCWgPQwgAV7JjI0d0QJSGlFKUaBVL02gWR0Ck+epbD/EPdX2UKGgGaAloD0MI8Z9uoMBlcUCUhpRSlGgVS95oFkdApPobrZ8KHHV9lChoBmgJaA9DCJf/kH67hnNAlIaUUpRoFUu0aBZHQKT6In+hoM91fZQoaAZoCWgPQwhFf2jmSU9yQJSGlFKUaBVL6WgWR0Ck+jNUXHindX2UKGgGaAloD0MI7Ulgc47rb0CUhpRSlGgVS8FoFkdApPpMA1ejVXV9lChoBmgJaA9DCC7L12W4HXFAlIaUUpRoFUvYaBZHQKT6Xdt2s7x1fZQoaAZoCWgPQwh0forjAKxxQJSGlFKUaBVLwWgWR0Ck+nGEf1YhdX2UKGgGaAloD0MI9wZfmAwHcECUhpRSlGgVS9BoFkdApPq3nIQvpXV9lChoBmgJaA9DCFyrPewFSm5AlIaUUpRoFUvTaBZHQKT6wg/1QIl1fZQoaAZoCWgPQwheRxyywbZyQJSGlFKUaBVLwWgWR0Ck+sfJ/5LzdX2UKGgGaAloD0MInZs24zTgb0CUhpRSlGgVS81oFkdApPr6AYpDu3V9lChoBmgJaA9DCDY9KCiFBHRAlIaUUpRoFUvBaBZHQKT7Ad6sySF1fZQoaAZoCWgPQwisH5vkR3ZxQJSGlFKUaBVLwWgWR0Ck+yAxagVXdX2UKGgGaAloD0MIdVsiF9wJckCUhpRSlGgVS/loFkdApPsu+RHPNXV9lChoBmgJaA9DCGniHeDJ2HBAlIaUUpRoFUvnaBZHQKT7bDXOGCZ1fZQoaAZoCWgPQwjerMH7qsNvQJSGlFKUaBVL1WgWR0Ck+3e9Ba9sdX2UKGgGaAloD0MIzv3V4/5ccECUhpRSlGgVS8hoFkdApPuflQuVX3V9lChoBmgJaA9DCEHYKVaNUXFAlIaUUpRoFUvDaBZHQKT7ycABDG91fZQoaAZoCWgPQwhq+1dWGk1xQJSGlFKUaBVLx2gWR0Ck++hdt2s8dX2UKGgGaAloD0MIeOxnsZS/ckCUhpRSlGgVS8NoFkdApPv4Enssx3V9lChoBmgJaA9DCIarAyDuLnFAlIaUUpRoFUvlaBZHQKT8HgsK9f11fZQoaAZoCWgPQwiad5yiYxlzQJSGlFKUaBVL02gWR0Ck/C9uYQardX2UKGgGaAloD0MI0A8jhEcScUCUhpRSlGgVS7RoFkdApPxYk5ZKWnV9lChoBmgJaA9DCNf6IqFt4XBAlIaUUpRoFUu4aBZHQKT8V/9YOlR1fZQoaAZoCWgPQwh1WOGWT/RxQJSGlFKUaBVLuWgWR0Ck/GwDNhVmdX2UKGgGaAloD0MI+64I/ne7cUCUhpRSlGgVS+VoFkdApPx30dzXBnV9lChoBmgJaA9DCNaryOjAVnFAlIaUUpRoFUvOaBZHQKT80e/5+H91fZQoaAZoCWgPQwj4UnjQLBhwQJSGlFKUaBVL1mgWR0Ck/NvcrRShdX2UKGgGaAloD0MIt3wkJb2kb0CUhpRSlGgVS81oFkdApPzsMd92HXV9lChoBmgJaA9DCBb7y+5Jgm9AlIaUUpRoFUvTaBZHQKT9BtZV4ot1fZQoaAZoCWgPQwjCwd7EUKJxQJSGlFKUaBVLu2gWR0Ck/RuMVDa5dX2UKGgGaAloD0MIwCK/fkhZckCUhpRSlGgVS8loFkdApP0tkUbkwXV9lChoBmgJaA9DCLx1/u2yG3FAlIaUUpRoFUvZaBZHQKT9h/ustCl1fZQoaAZoCWgPQwjM1CR4w35wQJSGlFKUaBVLxWgWR0Ck/a/wy6+WdX2UKGgGaAloD0MI5sqg2mCicECUhpRSlGgVS99oFkdApP28YZVGTnV9lChoBmgJaA9DCJnxttJrxG9AlIaUUpRoFUvVaBZHQKT9w//vOQh1fZQoaAZoCWgPQwgtXFZhMw1zQJSGlFKUaBVLxGgWR0Ck/f3yqdYodX2UKGgGaAloD0MIw0ZZvxlgckCUhpRSlGgVS91oFkdApP4F0DEFXHV9lChoBmgJaA9DCEonEkx123BAlIaUUpRoFUvWaBZHQKT+B3Zf2K51fZQoaAZoCWgPQwh2iH/YUgRvQJSGlFKUaBVLwmgWR0Ck/gxASnLrdX2UKGgGaAloD0MIA7LXu78+ckCUhpRSlGgVS99oFkdApP43E87p3XV9lChoBmgJaA9DCGtGBrmLWXBAlIaUUpRoFUviaBZHQKT+VcmjTKF1fZQoaAZoCWgPQwgHsTOFjudyQJSGlFKUaBVLyWgWR0Ck/oZ8a4tpdX2UKGgGaAloD0MITP+SVGYOcECUhpRSlGgVS9FoFkdApP6PCO3lS3V9lChoBmgJaA9DCMVwdQDE5XFAlIaUUpRoFUvHaBZHQKT+lRnezld1fZQoaAZoCWgPQwghkbbxpzdtQJSGlFKUaBVLv2gWR0Ck/sm3F1jidX2UKGgGaAloD0MIfjhIiDJ6cECUhpRSlGgVS9NoFkdApP7LLwF1S3V9lChoBmgJaA9DCNBgU+dRlm9AlIaUUpRoFUvTaBZHQKT+4A7xNIt1fZQoaAZoCWgPQwg+y/PgbopwQJSGlFKUaBVLymgWR0Ck/zAMlTm5dX2UKGgGaAloD0MIw9hCkMMtcUCUhpRSlGgVS7loFkdApP878HfMwHV9lChoBmgJaA9DCHB87Zmlj3FAlIaUUpRoFUvAaBZHQKT/PyzXz191ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 620,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}