a2c-PandaReachDense-v3 / config.json
jykang007's picture
Initial commit
0a813ec verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb9cea079c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb9ce9fbc40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723364039587990557, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoI4SP00q5T4jeTE/1GSAPu+3gjwxreU+7b1WP/4ZpT8Xrbc/Cp2uPzvhVr/NY1W/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAR63YP1m47T4F42M/rWklPM6LWz/H7Yq/1OBDP3jNtj+AWcc/WFHXP3xLFb89r2u/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACgjhI/TSrlPiN5MT8OH9Y/VmPHP0evjD/UZIA+77eCPDGt5T7nMPs+qArdunV6wz7tvVY//hmlPxettz9ol1k/gsFoP/C8qj8Kna4/O+FWv81jVb8SGVk+ee4Mvs3JzL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5724888 0.44758835 0.69325465]\n [ 0.25076926 0.01595685 0.44858697]\n [ 0.83883554 1.2898557 1.4349698 ]\n [ 1.3641675 -0.83937424 -0.8335541 ]]", "desired_goal": "[[ 1.692788 0.4642971 0.8901828 ]\n [ 0.010096 0.857602 -1.0853814 ]\n [ 0.76514935 1.4281454 1.5574188 ]\n [ 1.6821699 -0.58318305 -0.9206427 ]]", "observation": "[[ 0.5724888 0.44758835 0.69325465 1.6728227 1.557719 1.099099 ]\n [ 0.25076926 0.01595685 0.44858697 0.49060747 -0.00168641 0.38179365]\n [ 0.83883554 1.2898557 1.4349698 0.8499665 0.9092027 1.3338909 ]\n [ 1.3641675 -0.83937424 -0.8335541 0.2120097 -0.13762845 -1.5999085 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr1NTvJOLGT3B2B8+XL04Pak0yT0M12M+8EOtPUj4QT3ELz89HEsIvroEkb2XxhI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01289837 0.03748662 0.15610029]\n [ 0.04510246 0.09824497 0.22250003]\n [ 0.08460224 0.04735592 0.04667641]\n [-0.13309902 -0.0708098 0.14333569]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6i++M6zVtqMAWyUSwGMAXSUR0CT3/JN0vGqdX2UKGgGR7/Be6Zpi7TVaAdLAmgIR0CT3/4KQaJidX2UKGgGR7/OZeiSJTESaAdLA2gIR0CT37jlxOtXdX2UKGgGR7/FlDneSB9UaAdLA2gIR0CT4I1IRRMwdX2UKGgGR7/I/oJRfnfVaAdLA2gIR0CT4Ejqv/zbdX2UKGgGR7/Dl8PWhAW0aAdLAmgIR0CT4AdeY2KmdX2UKGgGR7+7FS88La24aAdLAmgIR0CT4FGbCrLhdX2UKGgGR7/IBtDUmUnpaAdLA2gIR0CT4Jqnm7rcdX2UKGgGR7/XyDIzWPLgaAdLBGgIR0CT38r2g398dX2UKGgGR7/EWGh24d6taAdLAmgIR0CT4KaCL/CJdX2UKGgGR7/Qs54nndO7aAdLA2gIR0CT4GICU5dXdX2UKGgGR7/XPNmlImPYaAdLBGgIR0CT4Bxp+MIedX2UKGgGR7/GDifg75mAaAdLA2gIR0CT39upCKJmdX2UKGgGR7/C5oXbdrO8aAdLAmgIR0CT4K/cFhXsdX2UKGgGR7+iQo1DSgGsaAdLAWgIR0CT3+BeXzDodX2UKGgGR7/RU5+6RQrMaAdLA2gIR0CT4G/pdKNAdX2UKGgGR7/SLPD50r9VaAdLA2gIR0CT4CpL26CldX2UKGgGR7+SYCyQgcLjaAdLAWgIR0CT3+VY6nzhdX2UKGgGR7/DwI+nqFAWaAdLAmgIR0CT4LzRhMJydX2UKGgGR7+bgsK9f1HwaAdLAWgIR0CT4HhLGrCFdX2UKGgGR7+4ujASFoL5aAdLAmgIR0CT4IGEf1YhdX2UKGgGR7/I+/xlQMx5aAdLA2gIR0CT3/bVjI7vdX2UKGgGR7/L3Sro4dZJaAdLA2gIR0CT4MsXzlLfdX2UKGgGR7/WXZ5AyEcsaAdLBGgIR0CT4EEUTL4fdX2UKGgGR7/OiHIp6QeWaAdLA2gIR0CT4Aguyu6mdX2UKGgGR7/NM+u/1xsEaAdLA2gIR0CT4NxgRbr1dX2UKGgGR7/aAWi1y/9HaAdLBGgIR0CT4JgpBomHdX2UKGgGR7/MNAC4jKPoaAdLA2gIR0CT4FJ7b+LndX2UKGgGR7+mx2St/4IsaAdLAWgIR0CT4A1HOKO1dX2UKGgGR7+h9LHuJDVpaAdLAWgIR0CT4JzcynDSdX2UKGgGR7+hm/WUbDMvaAdLAWgIR0CT4BHLA57xdX2UKGgGR7/KM4LkS26TaAdLA2gIR0CT4OozeoDQdX2UKGgGR7+57Qb+98JEaAdLAmgIR0CT4KW07bL2dX2UKGgGR7/OolUp/gBLaAdLA2gIR0CT4GAIY3vQdX2UKGgGR7/KuK4x1xKhaAdLA2gIR0CT4CJJoTPCdX2UKGgGR7/H+FUQ04zaaAdLA2gIR0CT4PrIYFaCdX2UKGgGR7/QornTy8SPaAdLA2gIR0CT4HCTEBKddX2UKGgGR7+dsN2C/XXiaAdLAWgIR0CT4P9qUNaydX2UKGgGR7/ew9q1w5vMaAdLBGgIR0CT4LrjHXEqdX2UKGgGR7/LtLteD3/QaAdLA2gIR0CT4DAz544ZdX2UKGgGR7/HOerdWQwLaAdLA2gIR0CT4IFN+LFXdX2UKGgGR7/JJSR8twrEaAdLA2gIR0CT4RAxSHdodX2UKGgGR7/Tprk8zQ/paAdLA2gIR0CT4EDOC5EudX2UKGgGR7/Yh1DBuXNUaAdLBGgIR0CT4NBnBciXdX2UKGgGR7/AjgQ6IWP+aAdLAmgIR0CT4IrAxi5NdX2UKGgGR7/E4iHIp6QeaAdLAmgIR0CT4Em16Vt5dX2UKGgGR7/SPv8ZUDMeaAdLA2gIR0CT4R4XXRPXdX2UKGgGR7/QvrnkkrwwaAdLA2gIR0CT4ONH6MzedX2UKGgGR7+zzlLeyiVTaAdLAmgIR0CT4S6TGHYZdX2UKGgGR7/QV+7UXpGGaAdLBGgIR0CT4KRChN/OdX2UKGgGR7/OOyVv/BFeaAdLA2gIR0CT4F8gIQe4dX2UKGgGR7+x7tzCDVYqaAdLAmgIR0CT4O6qKgqWdX2UKGgGR7+nC0ngHeJpaAdLAWgIR0CT4KjyWiUQdX2UKGgGR7/HMPjGT9sKaAdLA2gIR0CT4TwHqu8sdX2UKGgGR7+2YRdyDIzWaAdLAmgIR0CT4PeRPoFFdX2UKGgGR7++TSsr/bTMaAdLAmgIR0CT4LHvttygdX2UKGgGR7/SDZlFtsN2aAdLA2gIR0CT4GzF+/g0dX2UKGgGR7/QRA8jiXIEaAdLA2gIR0CT4UzTF2mpdX2UKGgGR7/LaJQ+EAYIaAdLA2gIR0CT4MLMs6JZdX2UKGgGR7/O8qWkadc0aAdLBGgIR0CT4Q0XP7emdX2UKGgGR7/T3os7MgU2aAdLBGgIR0CT4IJLdvbXdX2UKGgGR7+48/2TPjXGaAdLAmgIR0CT4RibDuSfdX2UKGgGR7/QLxI8QqZuaAdLA2gIR0CT4NMMZxaQdX2UKGgGR7/c9fkWAPNFaAdLBGgIR0CT4WIMz/IbdX2UKGgGR7+jL2YfGMn7aAdLAWgIR0CT4Nf9xZMddX2UKGgGR7/bWjXWe6I4aAdLBGgIR0CT4Jb7j1f3dX2UKGgGR7+yCe2/i5uqaAdLAmgIR0CT4WsvIwM6dX2UKGgGR7/SnXNC7btaaAdLA2gIR0CT4SapgkTpdX2UKGgGR7+7LzPKMefaaAdLAmgIR0CT4OD8LroodX2UKGgGR7/AZ4Oc2BJ7aAdLAmgIR0CT4TVXmvGIdX2UKGgGR7/DOTq0MPSVaAdLAmgIR0CT4PC7sfJWdX2UKGgGR7/PmmLtNSIhaAdLA2gIR0CT4KvicXnAdX2UKGgGR7/eXb/Ot4iYaAdLBGgIR0CT4YR64UeudX2UKGgGR7/Dat9x6v7naAdLAmgIR0CT4T/rB0p3dX2UKGgGR7/BiWE9Mbm2aAdLAmgIR0CT4Po73fygdX2UKGgGR7+28J2MbWEsaAdLAmgIR0CT4LUb1h9cdX2UKGgGR7/CYXwb2lEaaAdLAmgIR0CT4Y1aGHpKdX2UKGgGR7/DWluWKMvRaAdLAmgIR0CT4UjXWe6JdX2UKGgGR7/DEVFhG6PKaAdLAmgIR0CT4QMvRJEqdX2UKGgGR7/h+KTB68g7aAdLBGgIR0CT4MjqOcUedX2UKGgGR7/LML4N7SiNaAdLA2gIR0CT4Z1oQFs6dX2UKGgGR7/TKdhAnlXBaAdLA2gIR0CT4VjzZpSKdX2UKGgGR7/PObAk9lmOaAdLBGgIR0CT4RdyT6i1dX2UKGgGR7+0y0rsjVx0aAdLAmgIR0CT4WGsFMZhdX2UKGgGR7/JmaH9FWn1aAdLA2gIR0CT4NbC79Q5dX2UKGgGR7/LJwKjSG8FaAdLA2gIR0CT4a42jwhGdX2UKGgGR7/BJKaoddVvaAdLAmgIR0CT4bb8WKuTdX2UKGgGR7/Sx7iQ1aW5aAdLA2gIR0CT4XJ+DvmYdX2UKGgGR7/X8gpz90ihaAdLBGgIR0CT4SzxgAp8dX2UKGgGR7/OuRs/IKc/aAdLA2gIR0CT4OfWMCLddX2UKGgGR7+5iay8jAzpaAdLAmgIR0CT4TXg9/z8dX2UKGgGR7/EfKZDzAeraAdLA2gIR0CT4chcJMQFdX2UKGgGR7/QV9nbqQiiaAdLA2gIR0CT4YQV9F4LdX2UKGgGR7/HBeokzGgjaAdLA2gIR0CT4PkLx7RfdX2UKGgGR7+kT6BRQ79yaAdLAWgIR0CT4YjJdSl4dX2UKGgGR7+92aDwpe/paAdLAmgIR0CT4UMZgogFdX2UKGgGR7+aKk2xY7q6aAdLAWgIR0CT4UdgfEGadX2UKGgGR7+7pmmLtNSJaAdLAmgIR0CT4QI6r/83dX2UKGgGR7/UEORT0g8saAdLA2gIR0CT4dZqmCRPdX2UKGgGR7/HyFwkxASnaAdLA2gIR0CT4ZYdhiLEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGEvaG9tZS9qeWthbmcvYW5hY29uZGEzL2VudnMvcHkzcDExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYS9ob21lL2p5a2FuZy9hbmFjb25kYTMvZW52cy9weTNwMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.0-105-generic-x86_64-with-glibc2.31 # 115~20.04.1-Ubuntu SMP Mon Apr 15 17:33:04 UTC 2024", "Python": "3.11.9", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}