update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- esnli
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: textattack-roberta-base-MNLI-e-snli-classification-nli-base
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: esnli
|
17 |
+
type: esnli
|
18 |
+
config: plain_text
|
19 |
+
split: validation
|
20 |
+
args: plain_text
|
21 |
+
metrics:
|
22 |
+
- name: F1
|
23 |
+
type: f1
|
24 |
+
value: 0.9106202958294739
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.9110953058321479
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# textattack-roberta-base-MNLI-e-snli-classification-nli-base
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [textattack/roberta-base-MNLI](https://huggingface.co/textattack/roberta-base-MNLI) on the esnli dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.2488
|
38 |
+
- F1: 0.9106
|
39 |
+
- Accuracy: 0.9111
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 1e-05
|
59 |
+
- train_batch_size: 64
|
60 |
+
- eval_batch_size: 64
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_ratio: 0.05
|
65 |
+
- num_epochs: 3
|
66 |
+
- mixed_precision_training: Native AMP
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
|
72 |
+
| 1.5376 | 0.05 | 400 | 0.4010 | 0.8556 | 0.8556 |
|
73 |
+
| 0.4352 | 0.09 | 800 | 0.3349 | 0.8795 | 0.8800 |
|
74 |
+
| 0.4 | 0.14 | 1200 | 0.3180 | 0.8851 | 0.8854 |
|
75 |
+
| 0.3801 | 0.19 | 1600 | 0.2975 | 0.8918 | 0.8921 |
|
76 |
+
| 0.3599 | 0.23 | 2000 | 0.2949 | 0.8951 | 0.8955 |
|
77 |
+
| 0.3612 | 0.28 | 2400 | 0.2802 | 0.8987 | 0.8987 |
|
78 |
+
| 0.3519 | 0.33 | 2800 | 0.2763 | 0.8977 | 0.8980 |
|
79 |
+
| 0.349 | 0.37 | 3200 | 0.2766 | 0.9020 | 0.9023 |
|
80 |
+
| 0.3432 | 0.42 | 3600 | 0.2748 | 0.9000 | 0.9001 |
|
81 |
+
| 0.3435 | 0.47 | 4000 | 0.2702 | 0.9051 | 0.9051 |
|
82 |
+
| 0.3352 | 0.51 | 4400 | 0.2728 | 0.9034 | 0.9039 |
|
83 |
+
| 0.3277 | 0.56 | 4800 | 0.2634 | 0.9039 | 0.9043 |
|
84 |
+
| 0.3307 | 0.61 | 5200 | 0.2623 | 0.9050 | 0.9057 |
|
85 |
+
| 0.3247 | 0.65 | 5600 | 0.2685 | 0.9059 | 0.9063 |
|
86 |
+
| 0.3175 | 0.7 | 6000 | 0.2589 | 0.9081 | 0.9084 |
|
87 |
+
| 0.3144 | 0.75 | 6400 | 0.2586 | 0.9088 | 0.9093 |
|
88 |
+
| 0.3102 | 0.79 | 6800 | 0.2547 | 0.9088 | 0.9090 |
|
89 |
+
| 0.3223 | 0.84 | 7200 | 0.2526 | 0.9093 | 0.9096 |
|
90 |
+
| 0.3166 | 0.89 | 7600 | 0.2490 | 0.9115 | 0.9118 |
|
91 |
+
| 0.3124 | 0.93 | 8000 | 0.2503 | 0.9106 | 0.9107 |
|
92 |
+
| 0.3053 | 0.98 | 8400 | 0.2452 | 0.9099 | 0.9101 |
|
93 |
+
| 0.2908 | 1.03 | 8800 | 0.2575 | 0.9113 | 0.9119 |
|
94 |
+
| 0.2853 | 1.07 | 9200 | 0.2464 | 0.9114 | 0.9118 |
|
95 |
+
| 0.2796 | 1.12 | 9600 | 0.2488 | 0.9106 | 0.9111 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.27.1
|
101 |
+
- Pytorch 1.12.1+cu113
|
102 |
+
- Datasets 2.10.1
|
103 |
+
- Tokenizers 0.13.2
|