File size: 26,553 Bytes
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f0ad40
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
 
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
 
 
 
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
 
 
 
 
 
 
 
 
f1a2ec8
2e83eb5
 
 
 
f1a2ec8
 
 
 
 
 
2e83eb5
 
 
f1a2ec8
 
 
 
 
 
 
 
 
 
 
2e83eb5
 
 
 
 
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
 
 
 
 
 
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
f1a2ec8
 
 
2e83eb5
f1a2ec8
 
 
 
 
 
 
 
 
 
 
2e83eb5
f1a2ec8
 
 
 
 
 
 
 
2e83eb5
 
 
 
 
 
 
 
f1a2ec8
 
 
 
 
3821594
f1a2ec8
 
2e83eb5
 
 
f1a2ec8
 
 
 
 
 
2e83eb5
 
 
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
f1a2ec8
 
 
 
 
2e83eb5
f1a2ec8
 
2e83eb5
f1a2ec8
 
 
 
2e83eb5
 
 
 
f1a2ec8
 
2e83eb5
f1a2ec8
 
 
2e83eb5
 
 
 
 
 
f1a2ec8
 
 
 
 
2e83eb5
 
 
 
 
 
 
 
 
 
 
f1a2ec8
 
2e83eb5
 
 
 
 
 
 
 
f1a2ec8
 
2e83eb5
 
 
 
 
 
 
 
 
f1a2ec8
 
 
 
 
 
 
 
 
 
 
2e83eb5
f1a2ec8
 
 
 
2e83eb5
f1a2ec8
2e83eb5
 
 
f1a2ec8
 
 
2e83eb5
f1a2ec8
 
 
 
 
 
 
 
 
2e83eb5
 
 
f1a2ec8
 
 
 
 
2e83eb5
f1a2ec8
 
 
 
 
 
2e83eb5
f1a2ec8
 
2e83eb5
f1a2ec8
 
 
 
2e83eb5
f1a2ec8
 
 
 
2e83eb5
f1a2ec8
 
2e83eb5
 
 
f1a2ec8
 
2e83eb5
e77eb40
2e83eb5
e77eb40
2e83eb5
f1a2ec8
0f0ad40
2e83eb5
0f0ad40
2e83eb5
0f0ad40
f1a2ec8
 
 
0f0ad40
 
 
 
2e83eb5
3821594
4a1fbfb
f1a2ec8
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
f1a2ec8
 
 
 
 
 
 
 
 
3821594
f1a2ec8
3821594
 
 
 
 
 
 
 
 
 
 
2e83eb5
3821594
f1a2ec8
 
 
 
2e83eb5
f1a2ec8
 
 
2e83eb5
f1a2ec8
e77eb40
f1a2ec8
 
2e83eb5
f1a2ec8
 
 
3821594
 
 
 
2e83eb5
3821594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
3821594
2e83eb5
3821594
2e83eb5
 
 
 
 
 
3821594
 
2e83eb5
3821594
2e83eb5
 
 
 
 
 
 
 
 
 
 
3821594
 
 
 
2e83eb5
 
3821594
 
 
 
 
2e83eb5
 
 
 
 
3821594
 
 
2e83eb5
3821594
 
 
 
 
 
 
 
 
 
 
 
 
 
2e83eb5
3821594
2e83eb5
 
 
 
 
3821594
2e83eb5
 
 
 
 
3821594
 
 
 
2e83eb5
 
 
 
 
 
 
3821594
 
2e83eb5
3821594
 
 
 
2e83eb5
 
 
3821594
2e83eb5
3821594
 
2e83eb5
 
3821594
2e83eb5
3821594
 
2e83eb5
 
3821594
 
2e83eb5
 
 
 
 
3821594
2e83eb5
3821594
 
2e83eb5
 
3821594
2e83eb5
 
 
 
 
 
 
 
 
 
 
3821594
 
2e83eb5
f1a2ec8
 
 
 
 
 
2e83eb5
f1a2ec8
 
 
 
 
2e83eb5
f1a2ec8
 
2e83eb5
f1a2ec8
 
 
 
 
2e83eb5
f1a2ec8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""
JoyCaption Alpha One

This module provides functionality for generating captions for images using a
combination of CLIP, LLM, and custom image adapters. It supports various
caption types, tones, and lengths.

The main components include:
- Loading and initializing models (CLIP, LLM, image adapter)
- Processing images and generating captions
- Command-line interface for batch processing images in a directory
"""

import os
import argparse
import re
import random
from pathlib import Path
from PIL import Image
import pillow_jxl
import torch
import torchvision.transforms.functional as TVF
from transformers import (
    AutoModel,
    AutoTokenizer,
    AutoModelForCausalLM,
    PreTrainedTokenizer,
    PreTrainedTokenizerFast,
)
from torch import nn
from e6db_reader import TagSetNormalizer, tag_category2id, tag_rank_to_freq
from typing import List, Tuple, Dict

CLIP_PATH = "google/siglip-so400m-patch14-384"
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
CHECKPOINT_PATH = Path(__file__).resolve().parent / "9em124t2-499968"
CAPTION_TYPE_MAP = {
    ("descriptive", "formal", False, False): [
        "Write a descriptive caption for this image in a formal tone."
    ],
    ("descriptive", "formal", False, True): [
        "Write a descriptive caption for this image in a formal tone within "
        "{word_count} words."
    ],
    ("descriptive", "formal", True, False): [
        "Write a {length} descriptive caption for this image in a formal tone."
    ],
    ("descriptive", "informal", False, False): [
        "Write a descriptive caption for this image in a casual tone."
    ],
    ("descriptive", "informal", False, True): [
        "Write a descriptive caption for this image in a casual tone within "
        "{word_count} words."
    ],
    ("descriptive", "informal", True, False): [
        "Write a {length} descriptive caption for this image in a casual tone."
    ],
    ("training_prompt", "formal", False, False): [
        "Write a stable diffusion prompt for this image."
    ],
    ("training_prompt", "formal", False, True): [
        "Write a stable diffusion prompt for this image within {word_count} " "words."
    ],
    ("training_prompt", "formal", True, False): [
        "Write a {length} stable diffusion prompt for this image."
    ],
    ("rng-tags", "formal", False, False): [
        "Write a list of Booru tags for this image."
    ],
    ("rng-tags", "formal", False, True): [
        "Write a list of Booru tags for this image within {word_count} words."
    ],
    ("rng-tags", "formal", True, False): [
        "Write a {length} list of Booru tags for this image."
    ],
}

HF_TOKEN = os.environ.get("HF_TOKEN", None)


class ImageAdapter(nn.Module):
    """
    Custom image adapter module for processing CLIP vision outputs.

    This module adapts the output of a CLIP vision model to be compatible with
    a text model. It supports optional layer normalization, positional
    embeddings, and deep feature extraction.

    Args:
        input_features (int): Number of input features from the vision model.
        output_features (int): Number of output features to match the text model.
        ln1 (bool): Whether to use layer normalization.
        pos_emb (bool): Whether to use positional embeddings.
        num_image_tokens (int): Number of image tokens.
        deep_extract (bool): Whether to use deep feature extraction.
    """

    def __init__(
        self,
        input_features: int,
        output_features: int,
        ln1: bool,
        pos_emb: bool,
        num_image_tokens: int,
        deep_extract: bool,
    ):
        super().__init__()
        self.deep_extract = deep_extract

        if self.deep_extract:
            input_features = input_features * 5

        self.linear1 = nn.Linear(input_features, output_features)
        self.activation = nn.GELU()
        self.linear2 = nn.Linear(output_features, output_features)
        self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
        self.pos_emb = (
            None
            if not pos_emb
            else nn.Parameter(torch.zeros(num_image_tokens, input_features))
        )

        self.other_tokens = nn.Embedding(3, output_features)
        self.other_tokens.weight.data.normal_(mean=0.0, std=0.02)

    def forward(self, vision_outputs: torch.Tensor):
        """
        Forward pass of the image adapter.

        Args:
            vision_outputs (torch.Tensor): Output tensor from the CLIP vision model.

        Returns:
            torch.Tensor: Adapted image features.
        """
        if self.deep_extract:
            x = torch.concat(
                (
                    vision_outputs[-2],
                    vision_outputs[3],
                    vision_outputs[7],
                    vision_outputs[13],
                    vision_outputs[20],
                ),
                dim=-1,
            )
            assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}"
            assert (
                x.shape[-1] == vision_outputs[-2].shape[-1] * 5
            ), f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
        else:
            x = vision_outputs[-2]

        x = self.ln1(x)

        if self.pos_emb is not None:
            assert (
                x.shape[-2:] == self.pos_emb.shape
            ), f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
            x = x + self.pos_emb

        x = self.linear1(x)
        x = self.activation(x)
        x = self.linear2(x)

        other_tokens = self.other_tokens(
            torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(
                x.shape[0], -1
            )
        )
        assert other_tokens.shape == (
            x.shape[0],
            2,
            x.shape[2],
        ), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
        x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)

        return x

    def get_eot_embedding(self):
        """
        Get the end-of-text embedding.

        Returns:
            torch.Tensor: The end-of-text embedding.
        """
        return self.other_tokens(
            torch.tensor([2], device=self.other_tokens.weight.device)
        ).squeeze(0)


class JoyCaptionModel:
    """
    A class for generating captions for images using CLIP, LLM, and custom image adapters.

    This class encapsulates the functionality to load and initialize various models
    (CLIP, LLM, image adapter) and use them to process images and generate captions.
    It supports different caption types, tones, and lengths.

    Attributes:
        clip_model: The CLIP vision model for processing images.
        text_model: The language model for generating captions.
        image_adapter: Custom adapter for processing CLIP vision outputs.
        tokenizer: Tokenizer for the language model.

    Methods:
        load_models(): Load and initialize all required models.
        process_image(input_image, caption_type, caption_tone, caption_length):
            Process an input image and generate a caption based on specified parameters.
    """

    def __init__(self):
        self.clip_model = None
        self.text_model = None
        self.image_adapter = None
        self.tokenizer = None

    def load_models(self):
        """
        Load and initialize all required models (CLIP, LLM, image adapter).
        """
        print("Loading CLIP")
        self.clip_model = AutoModel.from_pretrained(CLIP_PATH)
        self.clip_model = self.clip_model.vision_model

        if (CHECKPOINT_PATH / "clip_model.pt").exists():
            print("Loading VLM's custom vision model")
            checkpoint = torch.load(
                CHECKPOINT_PATH / "clip_model.pt", map_location="cpu"
            )
            checkpoint = {
                k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()
            }
            self.clip_model.load_state_dict(checkpoint)
            del checkpoint

        self.clip_model.eval()
        self.clip_model.requires_grad_(False)
        self.clip_model.to("cuda")

        print("Loading tokenizer")
        self.tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
        assert isinstance(self.tokenizer, PreTrainedTokenizer) or isinstance(
            self.tokenizer, PreTrainedTokenizerFast
        ), f"Tokenizer is of type {type(self.tokenizer)}"

        print("Loading LLM")
        if (CHECKPOINT_PATH / "text_model").exists():
            print("Loading VLM's custom text model")
            self.text_model = AutoModelForCausalLM.from_pretrained(
                CHECKPOINT_PATH / "text_model", device_map=0, torch_dtype=torch.bfloat16
            )
        else:
            self.text_model = AutoModelForCausalLM.from_pretrained(
                MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16
            )

        self.text_model.eval()

        print("Loading image adapter")
        self.image_adapter = ImageAdapter(
            self.clip_model.config.hidden_size,
            self.text_model.config.hidden_size,
            False,
            False,
            38,
            False,
        )
        self.image_adapter.load_state_dict(
            torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")
        )
        self.image_adapter.eval()
        self.image_adapter.to("cuda")

    @torch.no_grad()
    def process_image(
        self,
        input_image: Image.Image,
        caption_type: str,
        caption_tone: str,
        caption_length: str | int,
        custom_prompt: str | None = None,
    ) -> str:
        """
        Process an input image and generate a caption based on specified parameters.
        """
        torch.cuda.empty_cache()

        if custom_prompt is not None:
            prompt_str = custom_prompt
        else:
            prompt_str = self._get_prompt_string(
                caption_type, caption_tone, caption_length
            )
        print(f"Prompt: {prompt_str}")

        pixel_values = self._preprocess_image(input_image)
        prompt = self._tokenize_prompt(prompt_str)

        embedded_images = self._embed_image(pixel_values)
        inputs_embeds, input_ids, attention_mask = self._construct_inputs(
            embedded_images, prompt
        )

        generate_ids = self._generate_caption(inputs_embeds, input_ids, attention_mask)
        caption = self._decode_caption(generate_ids, input_ids)

        return caption.strip()

    def _get_prompt_string(self, caption_type, caption_tone, caption_length):
        length = None if caption_length == "any" else caption_length

        if isinstance(length, str):
            try:
                length = int(length)
            except ValueError:
                pass

        if caption_type in {"rng-tags", "training_prompt"}:
            caption_tone = "formal"

        prompt_key = (
            caption_type,
            caption_tone,
            isinstance(length, str),
            isinstance(length, int),
        )
        if prompt_key not in CAPTION_TYPE_MAP:
            raise ValueError(f"Invalid caption type: {prompt_key}")

        prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(
            length=length, word_count=length
        )
        return prompt_str

    def _preprocess_image(self, input_image):
        image = input_image.resize((384, 384), Image.LANCZOS)
        pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
        pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
        pixel_values = pixel_values.to("cuda")
        return pixel_values

    def _tokenize_prompt(self, prompt_str):
        prompt = self.tokenizer.encode(
            prompt_str,
            return_tensors="pt",
            padding=False,
            truncation=False,
            add_special_tokens=False,
        )
        return prompt

    def _embed_image(self, pixel_values):
        with torch.amp.autocast_mode.autocast("cuda", enabled=True):
            vision_outputs = self.clip_model(
                pixel_values=pixel_values, output_hidden_states=True
            )
            image_features = vision_outputs.hidden_states
            embedded_images = self.image_adapter(image_features)
            embedded_images = embedded_images.to("cuda")
        return embedded_images

    def _construct_inputs(self, embedded_images, prompt):
        prompt_embeds = self.text_model.model.embed_tokens(prompt.to("cuda"))
        assert prompt_embeds.shape == (
            1,
            prompt.shape[1],
            self.text_model.config.hidden_size,
        ), (
            f"Prompt shape is {prompt_embeds.shape}, expected "
            f"{(1, prompt.shape[1], self.text_model.config.hidden_size)}"
        )

        embedded_bos = self.text_model.model.embed_tokens(
            torch.tensor(
                [[self.tokenizer.bos_token_id]],
                device=self.text_model.device,
                dtype=torch.int64,
            )
        )

        eot_embed = (
            self.image_adapter.get_eot_embedding()
            .unsqueeze(0)
            .to(dtype=self.text_model.dtype)
        )

        inputs_embeds = torch.cat(
            [
                embedded_bos.expand(embedded_images.shape[0], -1, -1),
                embedded_images.to(dtype=embedded_bos.dtype),
                prompt_embeds.expand(embedded_images.shape[0], -1, -1),
                eot_embed.expand(embedded_images.shape[0], -1, -1),
            ],
            dim=1,
        )

        input_ids = torch.cat(
            [
                torch.tensor([[self.tokenizer.bos_token_id]], dtype=torch.long),
                torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
                prompt,
                torch.tensor([[self.tokenizer.eos_token_id]], dtype=torch.long),
            ],
            dim=1,
        ).to("cuda")
        attention_mask = torch.ones_like(input_ids)

        return inputs_embeds, input_ids, attention_mask

    def _generate_caption(self, inputs_embeds, input_ids, attention_mask):
        generate_ids = self.text_model.generate(
            input_ids,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            max_new_tokens=300,
            do_sample=True,
            suppress_tokens=None,
        )
        return generate_ids

    def _decode_caption(self, generate_ids, input_ids):
        generate_ids = generate_ids[:, input_ids.shape[1] :]

        if generate_ids[0][-1] == self.tokenizer.eos_token_id or generate_ids[0][
            -1
        ] == self.tokenizer.convert_tokens_to_ids("<|eot_id|>"):
            generate_ids = generate_ids[:, :-1]

        caption = self.tokenizer.batch_decode(
            generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
        )[0]
        return caption


def main():
    """Generate captions for images in a directory and save them as .caption files."""
    parser = argparse.ArgumentParser(
        description="Generate captions for images in a directory and save them as .caption files."
    )
    parser.add_argument(
        "directory", type=str, help="Target directory containing images."
    )
    parser.add_argument(
        "--caption_type",
        type=str,
        default="descriptive",
        choices=["descriptive", "training_prompt", "rng-tags", "custom"],
        help="Type of caption to generate.",
    )
    parser.add_argument(
        "--caption_tone",
        type=str,
        default="formal",
        choices=["formal", "informal"],
        help="Tone of the caption.",
    )
    parser.add_argument(
        "--caption_length", type=str, default="any", help="Length of the caption."
    )
    parser.add_argument(
        "--dont-strip-commas",
        action="store_true",
        help="If set, commas will not be stripped from the generated captions.",
    )
    parser.add_argument(
        "--custom_prompt",
        type=str,
        help="Custom prompt for the captioner. Use with --caption_type custom.",
    )
    parser.add_argument(
        "--add-commas-to-sentence-ends",
        action="store_true",
        help="Add commas after periods in sentences",
    )
    parser.add_argument(
        "--feed-from-tags",
        type=int,
        nargs="?",
        const=-1,
        help="Use .txt files with the same base filename as the images as input to the captioner. Optionally specify the number of tags to use.",
    )
    parser.add_argument(
        "--random-tags",
        type=int,
        help="Randomly select n number of tags. Only works if --feed-from-tags is enabled.",
    )

    args = parser.parse_args()

    # Validate random-tags usage
    if args.random_tags is not None and args.feed_from_tags is None:
        parser.error("--random-tags can only be used when --feed-from-tags is enabled")

    print("Loading e621 tag data")
    tagset_normalizer = make_tagset_normalizer()

    # Initialize and load models
    joy_caption_model = JoyCaptionModel()
    joy_caption_model.load_models()

    # Validate custom prompt usage
    if args.caption_type == "custom" and not args.custom_prompt:
        parser.error("--custom_prompt is required when using --caption_type custom")
    elif args.caption_type != "custom" and args.custom_prompt:
        parser.error("--custom_prompt can only be used with --caption_type custom")

    image_extensions = {".webp", ".png", ".jpeg", ".jpg", ".jxl"}
    for image_path in Path(args.directory).rglob("*"):
        if image_path.suffix.lower() in image_extensions:
            caption_file = image_path.with_suffix(".caption")

            # Skip if the caption file already exists
            if caption_file.exists():
                print(f"Skipping {image_path}: Caption file already exists.")
                continue

            input_image = Image.open(image_path).convert("RGB")

            # Use custom prompt if specified
            custom_prompt = None
            if args.caption_type == "custom":
                custom_prompt = args.custom_prompt
            elif args.feed_from_tags is not None:
                custom_prompt = prompt_from_tags(args, image_path, tagset_normalizer)

            print(f"Custom prompt: {custom_prompt}")

            caption = joy_caption_model.process_image(
                input_image,
                args.caption_type,
                args.caption_tone,
                args.caption_length,
                custom_prompt=custom_prompt,
            )

            # Strip commas if the --dont-strip-commas flag is not set
            if not args.dont_strip_commas:
                # Existing comma stripping logic
                caption = re.sub(r",\s*([^\d])", r" \1", caption)

                # New feature: Add commas after periods if specified
                if args.add_commas_to_sentence_ends:
                    caption = re.sub(r"(\.)(\s+)([A-Z])", r"\1,\2\3", caption)

            print(f"Caption for {image_path}:\n\n{caption}\n\n")

            # Save the caption to a .caption file
            with open(caption_file, "w", encoding="utf-8") as f:
                f.write(caption)
            print(f"Caption saved to {caption_file}")


RE_PARENS_SUFFIX = re.compile(r"_\([^)]+\)$")
E6DB_DATA = Path(__file__).resolve().parent / "data"


def make_tagset_normalizer():
    """
    Create a TagSetNormalizer for encoding/decoding tags to and from integers.
    Configures it based on the provided config.
    """
    # This loads all the aliases and implications
    tagset_normalizer = TagSetNormalizer(E6DB_DATA)

    tagid2cat = tagset_normalizer.tag_normalizer.tag_categories
    cat_artist = tag_category2id["artist"]
    cat2suffix = {
        tag_category2id["character"]: "_(character)",
        tag_category2id["lore"]: "_(lore)",
        tag_category2id["species"]: "_(species)",
        tag_category2id["copyright"]: "_(copyright)",
    }

    # Create additional aliases for tags using simple rules
    def input_map(tag, tid):
        # Make an alias without parentheses, it might conflict but we'll handle
        # it depending on `on_alias_conflict` config value.
        without_suffix = RE_PARENS_SUFFIX.sub("", tag)
        had_suffix = tag != without_suffix
        if had_suffix:
            yield without_suffix

        # Add an alias with the suffix (special case for artist)
        cat = tagid2cat[tid] if tid is not None else -1
        if cat == cat_artist:
            artist = without_suffix.removeprefix("by_")
            if artist != without_suffix:
                yield artist
                if not had_suffix:
                    yield f"{artist}_(artist)"
            else:
                yield f"by_{artist}"
                if not had_suffix:
                    yield f"by_{artist}_(artist)"
        elif not had_suffix:
            suffix = cat2suffix.get(cat)
            if suffix is not None:
                yield f"{without_suffix}{suffix}"

        # Recognize tags where ':' were replaced by a space (aspect ratio)
        if ":" in tag:
            yield tag.replace(":", "_")

    return tagset_normalizer.map_inputs(input_map, on_conflict="ignore")


def format_nl_list(l):
    n = len(l)
    assert n > 0
    if n == 1:
        return l[0]
    elif n == 2:
        return f"{l[0]} and {l[1]}"
    else:  # n > 2
        *head, last = l
        return ", ".join(head) + ", and " + last


TAG_SPECIES = tag_category2id["species"]
TAG_CHARACTER = tag_category2id["character"]
TAG_ARTIST = tag_category2id["artist"]
TAG_COPYRIGHT = tag_category2id["copyright"]
TAG_META = tag_category2id["meta"]
TAG_FREQ_THRESH = 0


def prompt_from_tags(args, image_path: Path, tagset_normalizer: TagSetNormalizer):
    """
    Generates a prompt from tags associated with the given image.

    Args:
        args: Additional arguments for the function.
        image_path (Path): The path to the image file.
        tagset_normalizer (TagSetNormalizer): An instance to normalize the tag set.

    Returns:
        None
    """
    tag_file = find_tag_file(image_path)
    if tag_file is None:
        return None

    with open(tag_file, "r", encoding="utf-8") as f:
        tags = f.read().lower().split(",")

    tag_id_to_cat_id = tagset_normalizer.tag_normalizer.tag_categories
    encode = tagset_normalizer.tag_normalizer.encode

    # These lists contain tuples (freq, tag, tag_id)
    tag_by_category: Dict[int, List[Tuple[int, str, int]]] = {
        cat: [] for cat in [TAG_ARTIST, TAG_CHARACTER, TAG_COPYRIGHT, TAG_SPECIES]
    }
    other_tags: List[Tuple[int, str, int]] = []
    implied: set = set()
    for tag in tags:
        tag = tag.strip()
        # Encode the tag into a numerical id
        tag_id = encode(tag.replace(" ", "_"))
        if tag_id is None:
            other_tags.append((0, tag, None))
            implied.update(tagset_normalizer.implications_rej.get(tag_id, ()))
            continue
        # Get the category of the tag
        cat_id = tag_id_to_cat_id[tag_id]
        # Skip meta tags
        if cat_id == TAG_META:
            continue
        implied.update(tagset_normalizer.implications.get(tag_id, ()))
        # Get the frequency of the tag
        freq = tag_rank_to_freq(tag_id)
        if freq < TAG_FREQ_THRESH:
            continue
        tag_by_category.get(cat_id, other_tags).append((int(freq), tag, tag_id))

    other_tags = sorted(
        (int(freq), tag, tag_id)
        for freq, tag, tag_id in other_tags
        if tag_id not in implied
    )
    for cat_id, cat_list in tag_by_category.items():
        tag_by_category[cat_id] = sorted(
            (int(freq), tag, tag_id)
            for freq, tag, tag_id in cat_list
            if tag_id not in implied
        )

    if args.random_tags is not None:
        # Randomly select tags if --random-tags is specified
        num_tags = min(args.random_tags, len(other_tags))
        other_tags = random.sample(
            [
                (i, tag, tag_id)
                for i, tag, tag_id in enumerate(tags[: round(args.random_tags * 1.5)])
            ],
            num_tags,
        )
    elif args.feed_from_tags > 0:
        # Use specified number of tags if --feed-from-tags has a positive value
        other_tags = other_tags[: args.feed_from_tags]

    # Prepare sentence pieces
    artist_tag = tag_by_category[TAG_ARTIST]
    if artist_tag:
        artist_list = [str(tag).removeprefix('by ')
                       for *_, tag in artist_tag[:4]]
        artist_txt = f"by {format_nl_list(artist_list)}"
    else:
        artist_txt = ""
    character_tag = tag_by_category[TAG_CHARACTER]
    if character_tag:
        tags = [tag for _, tag, *_ in character_tag[:4]]
        character_txt = f" named {format_nl_list(tags)}"
    else:
        character_txt = ""
    species_tag = tag_by_category[TAG_SPECIES]
    if species_tag:
        species_txt = "of a" if len(character_tag) <= 1 and len(species_tag) <= 1 else "of"
        species_txt += format_nl_list([tag for *_, tag in species_tag[:4]])
    else:
        if character_tag:
            species_txt = (
                " a character"
                if len(character_tag) <= 1
                else " characters"
            )
        else:
            species_txt = ""
    copyright_tag = tag_by_category[TAG_COPYRIGHT]
    if copyright_tag:
        tags = [tag for _, tag, *_ in copyright_tag[:4]]
        copyright_txt = f" from {format_nl_list(tags)}"
    else:
        copyright_txt = ""

    tag_string = ", ".join(tag for *_, tag in other_tags)
    custom_prompt = (
        f"Write a descriptive caption for this image {artist_txt}"
        f"of {species_txt}"
        f"{character_txt}"
        f"{copyright_txt}"
        f" in a formal tone. Use these tags to construct your caption: "
        f"{tag_string}"
    )
    return custom_prompt


def find_tag_file(image_path):
    """
    Find the corresponding .txt file for the given image path.
    Handles cases where the image has a -(number) suffix.
    """
    base_name = image_path.stem
    tag_file = image_path.with_suffix(".txt")

    if tag_file.exists():
        return tag_file

    # Handle -(number) suffix
    match = re.match(r"(.+)-\d+$", base_name)
    if match:
        base_name = match.group(1)
        tag_file = image_path.with_name(base_name).with_suffix(".txt")
        if tag_file.exists():
            return tag_file

    return None


if __name__ == "__main__":
    main()