File size: 26,553 Bytes
f1a2ec8 0f0ad40 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 3821594 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 e77eb40 2e83eb5 e77eb40 2e83eb5 f1a2ec8 0f0ad40 2e83eb5 0f0ad40 2e83eb5 0f0ad40 f1a2ec8 0f0ad40 2e83eb5 3821594 4a1fbfb f1a2ec8 2e83eb5 f1a2ec8 3821594 f1a2ec8 3821594 2e83eb5 3821594 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 e77eb40 f1a2ec8 2e83eb5 f1a2ec8 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 3821594 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 f1a2ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
JoyCaption Alpha One
This module provides functionality for generating captions for images using a
combination of CLIP, LLM, and custom image adapters. It supports various
caption types, tones, and lengths.
The main components include:
- Loading and initializing models (CLIP, LLM, image adapter)
- Processing images and generating captions
- Command-line interface for batch processing images in a directory
"""
import os
import argparse
import re
import random
from pathlib import Path
from PIL import Image
import pillow_jxl
import torch
import torchvision.transforms.functional as TVF
from transformers import (
AutoModel,
AutoTokenizer,
AutoModelForCausalLM,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
)
from torch import nn
from e6db_reader import TagSetNormalizer, tag_category2id, tag_rank_to_freq
from typing import List, Tuple, Dict
CLIP_PATH = "google/siglip-so400m-patch14-384"
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
CHECKPOINT_PATH = Path(__file__).resolve().parent / "9em124t2-499968"
CAPTION_TYPE_MAP = {
("descriptive", "formal", False, False): [
"Write a descriptive caption for this image in a formal tone."
],
("descriptive", "formal", False, True): [
"Write a descriptive caption for this image in a formal tone within "
"{word_count} words."
],
("descriptive", "formal", True, False): [
"Write a {length} descriptive caption for this image in a formal tone."
],
("descriptive", "informal", False, False): [
"Write a descriptive caption for this image in a casual tone."
],
("descriptive", "informal", False, True): [
"Write a descriptive caption for this image in a casual tone within "
"{word_count} words."
],
("descriptive", "informal", True, False): [
"Write a {length} descriptive caption for this image in a casual tone."
],
("training_prompt", "formal", False, False): [
"Write a stable diffusion prompt for this image."
],
("training_prompt", "formal", False, True): [
"Write a stable diffusion prompt for this image within {word_count} " "words."
],
("training_prompt", "formal", True, False): [
"Write a {length} stable diffusion prompt for this image."
],
("rng-tags", "formal", False, False): [
"Write a list of Booru tags for this image."
],
("rng-tags", "formal", False, True): [
"Write a list of Booru tags for this image within {word_count} words."
],
("rng-tags", "formal", True, False): [
"Write a {length} list of Booru tags for this image."
],
}
HF_TOKEN = os.environ.get("HF_TOKEN", None)
class ImageAdapter(nn.Module):
"""
Custom image adapter module for processing CLIP vision outputs.
This module adapts the output of a CLIP vision model to be compatible with
a text model. It supports optional layer normalization, positional
embeddings, and deep feature extraction.
Args:
input_features (int): Number of input features from the vision model.
output_features (int): Number of output features to match the text model.
ln1 (bool): Whether to use layer normalization.
pos_emb (bool): Whether to use positional embeddings.
num_image_tokens (int): Number of image tokens.
deep_extract (bool): Whether to use deep feature extraction.
"""
def __init__(
self,
input_features: int,
output_features: int,
ln1: bool,
pos_emb: bool,
num_image_tokens: int,
deep_extract: bool,
):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = (
None
if not pos_emb
else nn.Parameter(torch.zeros(num_image_tokens, input_features))
)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02)
def forward(self, vision_outputs: torch.Tensor):
"""
Forward pass of the image adapter.
Args:
vision_outputs (torch.Tensor): Output tensor from the CLIP vision model.
Returns:
torch.Tensor: Adapted image features.
"""
if self.deep_extract:
x = torch.concat(
(
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
),
dim=-1,
)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}"
assert (
x.shape[-1] == vision_outputs[-2].shape[-1] * 5
), f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert (
x.shape[-2:] == self.pos_emb.shape
), f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
other_tokens = self.other_tokens(
torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(
x.shape[0], -1
)
)
assert other_tokens.shape == (
x.shape[0],
2,
x.shape[2],
), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
"""
Get the end-of-text embedding.
Returns:
torch.Tensor: The end-of-text embedding.
"""
return self.other_tokens(
torch.tensor([2], device=self.other_tokens.weight.device)
).squeeze(0)
class JoyCaptionModel:
"""
A class for generating captions for images using CLIP, LLM, and custom image adapters.
This class encapsulates the functionality to load and initialize various models
(CLIP, LLM, image adapter) and use them to process images and generate captions.
It supports different caption types, tones, and lengths.
Attributes:
clip_model: The CLIP vision model for processing images.
text_model: The language model for generating captions.
image_adapter: Custom adapter for processing CLIP vision outputs.
tokenizer: Tokenizer for the language model.
Methods:
load_models(): Load and initialize all required models.
process_image(input_image, caption_type, caption_tone, caption_length):
Process an input image and generate a caption based on specified parameters.
"""
def __init__(self):
self.clip_model = None
self.text_model = None
self.image_adapter = None
self.tokenizer = None
def load_models(self):
"""
Load and initialize all required models (CLIP, LLM, image adapter).
"""
print("Loading CLIP")
self.clip_model = AutoModel.from_pretrained(CLIP_PATH)
self.clip_model = self.clip_model.vision_model
if (CHECKPOINT_PATH / "clip_model.pt").exists():
print("Loading VLM's custom vision model")
checkpoint = torch.load(
CHECKPOINT_PATH / "clip_model.pt", map_location="cpu"
)
checkpoint = {
k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()
}
self.clip_model.load_state_dict(checkpoint)
del checkpoint
self.clip_model.eval()
self.clip_model.requires_grad_(False)
self.clip_model.to("cuda")
print("Loading tokenizer")
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(self.tokenizer, PreTrainedTokenizer) or isinstance(
self.tokenizer, PreTrainedTokenizerFast
), f"Tokenizer is of type {type(self.tokenizer)}"
print("Loading LLM")
if (CHECKPOINT_PATH / "text_model").exists():
print("Loading VLM's custom text model")
self.text_model = AutoModelForCausalLM.from_pretrained(
CHECKPOINT_PATH / "text_model", device_map=0, torch_dtype=torch.bfloat16
)
else:
self.text_model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16
)
self.text_model.eval()
print("Loading image adapter")
self.image_adapter = ImageAdapter(
self.clip_model.config.hidden_size,
self.text_model.config.hidden_size,
False,
False,
38,
False,
)
self.image_adapter.load_state_dict(
torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")
)
self.image_adapter.eval()
self.image_adapter.to("cuda")
@torch.no_grad()
def process_image(
self,
input_image: Image.Image,
caption_type: str,
caption_tone: str,
caption_length: str | int,
custom_prompt: str | None = None,
) -> str:
"""
Process an input image and generate a caption based on specified parameters.
"""
torch.cuda.empty_cache()
if custom_prompt is not None:
prompt_str = custom_prompt
else:
prompt_str = self._get_prompt_string(
caption_type, caption_tone, caption_length
)
print(f"Prompt: {prompt_str}")
pixel_values = self._preprocess_image(input_image)
prompt = self._tokenize_prompt(prompt_str)
embedded_images = self._embed_image(pixel_values)
inputs_embeds, input_ids, attention_mask = self._construct_inputs(
embedded_images, prompt
)
generate_ids = self._generate_caption(inputs_embeds, input_ids, attention_mask)
caption = self._decode_caption(generate_ids, input_ids)
return caption.strip()
def _get_prompt_string(self, caption_type, caption_tone, caption_length):
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
try:
length = int(length)
except ValueError:
pass
if caption_type in {"rng-tags", "training_prompt"}:
caption_tone = "formal"
prompt_key = (
caption_type,
caption_tone,
isinstance(length, str),
isinstance(length, int),
)
if prompt_key not in CAPTION_TYPE_MAP:
raise ValueError(f"Invalid caption type: {prompt_key}")
prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(
length=length, word_count=length
)
return prompt_str
def _preprocess_image(self, input_image):
image = input_image.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
pixel_values = pixel_values.to("cuda")
return pixel_values
def _tokenize_prompt(self, prompt_str):
prompt = self.tokenizer.encode(
prompt_str,
return_tensors="pt",
padding=False,
truncation=False,
add_special_tokens=False,
)
return prompt
def _embed_image(self, pixel_values):
with torch.amp.autocast_mode.autocast("cuda", enabled=True):
vision_outputs = self.clip_model(
pixel_values=pixel_values, output_hidden_states=True
)
image_features = vision_outputs.hidden_states
embedded_images = self.image_adapter(image_features)
embedded_images = embedded_images.to("cuda")
return embedded_images
def _construct_inputs(self, embedded_images, prompt):
prompt_embeds = self.text_model.model.embed_tokens(prompt.to("cuda"))
assert prompt_embeds.shape == (
1,
prompt.shape[1],
self.text_model.config.hidden_size,
), (
f"Prompt shape is {prompt_embeds.shape}, expected "
f"{(1, prompt.shape[1], self.text_model.config.hidden_size)}"
)
embedded_bos = self.text_model.model.embed_tokens(
torch.tensor(
[[self.tokenizer.bos_token_id]],
device=self.text_model.device,
dtype=torch.int64,
)
)
eot_embed = (
self.image_adapter.get_eot_embedding()
.unsqueeze(0)
.to(dtype=self.text_model.dtype)
)
inputs_embeds = torch.cat(
[
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images.to(dtype=embedded_bos.dtype),
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
eot_embed.expand(embedded_images.shape[0], -1, -1),
],
dim=1,
)
input_ids = torch.cat(
[
torch.tensor([[self.tokenizer.bos_token_id]], dtype=torch.long),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
prompt,
torch.tensor([[self.tokenizer.eos_token_id]], dtype=torch.long),
],
dim=1,
).to("cuda")
attention_mask = torch.ones_like(input_ids)
return inputs_embeds, input_ids, attention_mask
def _generate_caption(self, inputs_embeds, input_ids, attention_mask):
generate_ids = self.text_model.generate(
input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
max_new_tokens=300,
do_sample=True,
suppress_tokens=None,
)
return generate_ids
def _decode_caption(self, generate_ids, input_ids):
generate_ids = generate_ids[:, input_ids.shape[1] :]
if generate_ids[0][-1] == self.tokenizer.eos_token_id or generate_ids[0][
-1
] == self.tokenizer.convert_tokens_to_ids("<|eot_id|>"):
generate_ids = generate_ids[:, :-1]
caption = self.tokenizer.batch_decode(
generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
)[0]
return caption
def main():
"""Generate captions for images in a directory and save them as .caption files."""
parser = argparse.ArgumentParser(
description="Generate captions for images in a directory and save them as .caption files."
)
parser.add_argument(
"directory", type=str, help="Target directory containing images."
)
parser.add_argument(
"--caption_type",
type=str,
default="descriptive",
choices=["descriptive", "training_prompt", "rng-tags", "custom"],
help="Type of caption to generate.",
)
parser.add_argument(
"--caption_tone",
type=str,
default="formal",
choices=["formal", "informal"],
help="Tone of the caption.",
)
parser.add_argument(
"--caption_length", type=str, default="any", help="Length of the caption."
)
parser.add_argument(
"--dont-strip-commas",
action="store_true",
help="If set, commas will not be stripped from the generated captions.",
)
parser.add_argument(
"--custom_prompt",
type=str,
help="Custom prompt for the captioner. Use with --caption_type custom.",
)
parser.add_argument(
"--add-commas-to-sentence-ends",
action="store_true",
help="Add commas after periods in sentences",
)
parser.add_argument(
"--feed-from-tags",
type=int,
nargs="?",
const=-1,
help="Use .txt files with the same base filename as the images as input to the captioner. Optionally specify the number of tags to use.",
)
parser.add_argument(
"--random-tags",
type=int,
help="Randomly select n number of tags. Only works if --feed-from-tags is enabled.",
)
args = parser.parse_args()
# Validate random-tags usage
if args.random_tags is not None and args.feed_from_tags is None:
parser.error("--random-tags can only be used when --feed-from-tags is enabled")
print("Loading e621 tag data")
tagset_normalizer = make_tagset_normalizer()
# Initialize and load models
joy_caption_model = JoyCaptionModel()
joy_caption_model.load_models()
# Validate custom prompt usage
if args.caption_type == "custom" and not args.custom_prompt:
parser.error("--custom_prompt is required when using --caption_type custom")
elif args.caption_type != "custom" and args.custom_prompt:
parser.error("--custom_prompt can only be used with --caption_type custom")
image_extensions = {".webp", ".png", ".jpeg", ".jpg", ".jxl"}
for image_path in Path(args.directory).rglob("*"):
if image_path.suffix.lower() in image_extensions:
caption_file = image_path.with_suffix(".caption")
# Skip if the caption file already exists
if caption_file.exists():
print(f"Skipping {image_path}: Caption file already exists.")
continue
input_image = Image.open(image_path).convert("RGB")
# Use custom prompt if specified
custom_prompt = None
if args.caption_type == "custom":
custom_prompt = args.custom_prompt
elif args.feed_from_tags is not None:
custom_prompt = prompt_from_tags(args, image_path, tagset_normalizer)
print(f"Custom prompt: {custom_prompt}")
caption = joy_caption_model.process_image(
input_image,
args.caption_type,
args.caption_tone,
args.caption_length,
custom_prompt=custom_prompt,
)
# Strip commas if the --dont-strip-commas flag is not set
if not args.dont_strip_commas:
# Existing comma stripping logic
caption = re.sub(r",\s*([^\d])", r" \1", caption)
# New feature: Add commas after periods if specified
if args.add_commas_to_sentence_ends:
caption = re.sub(r"(\.)(\s+)([A-Z])", r"\1,\2\3", caption)
print(f"Caption for {image_path}:\n\n{caption}\n\n")
# Save the caption to a .caption file
with open(caption_file, "w", encoding="utf-8") as f:
f.write(caption)
print(f"Caption saved to {caption_file}")
RE_PARENS_SUFFIX = re.compile(r"_\([^)]+\)$")
E6DB_DATA = Path(__file__).resolve().parent / "data"
def make_tagset_normalizer():
"""
Create a TagSetNormalizer for encoding/decoding tags to and from integers.
Configures it based on the provided config.
"""
# This loads all the aliases and implications
tagset_normalizer = TagSetNormalizer(E6DB_DATA)
tagid2cat = tagset_normalizer.tag_normalizer.tag_categories
cat_artist = tag_category2id["artist"]
cat2suffix = {
tag_category2id["character"]: "_(character)",
tag_category2id["lore"]: "_(lore)",
tag_category2id["species"]: "_(species)",
tag_category2id["copyright"]: "_(copyright)",
}
# Create additional aliases for tags using simple rules
def input_map(tag, tid):
# Make an alias without parentheses, it might conflict but we'll handle
# it depending on `on_alias_conflict` config value.
without_suffix = RE_PARENS_SUFFIX.sub("", tag)
had_suffix = tag != without_suffix
if had_suffix:
yield without_suffix
# Add an alias with the suffix (special case for artist)
cat = tagid2cat[tid] if tid is not None else -1
if cat == cat_artist:
artist = without_suffix.removeprefix("by_")
if artist != without_suffix:
yield artist
if not had_suffix:
yield f"{artist}_(artist)"
else:
yield f"by_{artist}"
if not had_suffix:
yield f"by_{artist}_(artist)"
elif not had_suffix:
suffix = cat2suffix.get(cat)
if suffix is not None:
yield f"{without_suffix}{suffix}"
# Recognize tags where ':' were replaced by a space (aspect ratio)
if ":" in tag:
yield tag.replace(":", "_")
return tagset_normalizer.map_inputs(input_map, on_conflict="ignore")
def format_nl_list(l):
n = len(l)
assert n > 0
if n == 1:
return l[0]
elif n == 2:
return f"{l[0]} and {l[1]}"
else: # n > 2
*head, last = l
return ", ".join(head) + ", and " + last
TAG_SPECIES = tag_category2id["species"]
TAG_CHARACTER = tag_category2id["character"]
TAG_ARTIST = tag_category2id["artist"]
TAG_COPYRIGHT = tag_category2id["copyright"]
TAG_META = tag_category2id["meta"]
TAG_FREQ_THRESH = 0
def prompt_from_tags(args, image_path: Path, tagset_normalizer: TagSetNormalizer):
"""
Generates a prompt from tags associated with the given image.
Args:
args: Additional arguments for the function.
image_path (Path): The path to the image file.
tagset_normalizer (TagSetNormalizer): An instance to normalize the tag set.
Returns:
None
"""
tag_file = find_tag_file(image_path)
if tag_file is None:
return None
with open(tag_file, "r", encoding="utf-8") as f:
tags = f.read().lower().split(",")
tag_id_to_cat_id = tagset_normalizer.tag_normalizer.tag_categories
encode = tagset_normalizer.tag_normalizer.encode
# These lists contain tuples (freq, tag, tag_id)
tag_by_category: Dict[int, List[Tuple[int, str, int]]] = {
cat: [] for cat in [TAG_ARTIST, TAG_CHARACTER, TAG_COPYRIGHT, TAG_SPECIES]
}
other_tags: List[Tuple[int, str, int]] = []
implied: set = set()
for tag in tags:
tag = tag.strip()
# Encode the tag into a numerical id
tag_id = encode(tag.replace(" ", "_"))
if tag_id is None:
other_tags.append((0, tag, None))
implied.update(tagset_normalizer.implications_rej.get(tag_id, ()))
continue
# Get the category of the tag
cat_id = tag_id_to_cat_id[tag_id]
# Skip meta tags
if cat_id == TAG_META:
continue
implied.update(tagset_normalizer.implications.get(tag_id, ()))
# Get the frequency of the tag
freq = tag_rank_to_freq(tag_id)
if freq < TAG_FREQ_THRESH:
continue
tag_by_category.get(cat_id, other_tags).append((int(freq), tag, tag_id))
other_tags = sorted(
(int(freq), tag, tag_id)
for freq, tag, tag_id in other_tags
if tag_id not in implied
)
for cat_id, cat_list in tag_by_category.items():
tag_by_category[cat_id] = sorted(
(int(freq), tag, tag_id)
for freq, tag, tag_id in cat_list
if tag_id not in implied
)
if args.random_tags is not None:
# Randomly select tags if --random-tags is specified
num_tags = min(args.random_tags, len(other_tags))
other_tags = random.sample(
[
(i, tag, tag_id)
for i, tag, tag_id in enumerate(tags[: round(args.random_tags * 1.5)])
],
num_tags,
)
elif args.feed_from_tags > 0:
# Use specified number of tags if --feed-from-tags has a positive value
other_tags = other_tags[: args.feed_from_tags]
# Prepare sentence pieces
artist_tag = tag_by_category[TAG_ARTIST]
if artist_tag:
artist_list = [str(tag).removeprefix('by ')
for *_, tag in artist_tag[:4]]
artist_txt = f"by {format_nl_list(artist_list)}"
else:
artist_txt = ""
character_tag = tag_by_category[TAG_CHARACTER]
if character_tag:
tags = [tag for _, tag, *_ in character_tag[:4]]
character_txt = f" named {format_nl_list(tags)}"
else:
character_txt = ""
species_tag = tag_by_category[TAG_SPECIES]
if species_tag:
species_txt = "of a" if len(character_tag) <= 1 and len(species_tag) <= 1 else "of"
species_txt += format_nl_list([tag for *_, tag in species_tag[:4]])
else:
if character_tag:
species_txt = (
" a character"
if len(character_tag) <= 1
else " characters"
)
else:
species_txt = ""
copyright_tag = tag_by_category[TAG_COPYRIGHT]
if copyright_tag:
tags = [tag for _, tag, *_ in copyright_tag[:4]]
copyright_txt = f" from {format_nl_list(tags)}"
else:
copyright_txt = ""
tag_string = ", ".join(tag for *_, tag in other_tags)
custom_prompt = (
f"Write a descriptive caption for this image {artist_txt}"
f"of {species_txt}"
f"{character_txt}"
f"{copyright_txt}"
f" in a formal tone. Use these tags to construct your caption: "
f"{tag_string}"
)
return custom_prompt
def find_tag_file(image_path):
"""
Find the corresponding .txt file for the given image path.
Handles cases where the image has a -(number) suffix.
"""
base_name = image_path.stem
tag_file = image_path.with_suffix(".txt")
if tag_file.exists():
return tag_file
# Handle -(number) suffix
match = re.match(r"(.+)-\d+$", base_name)
if match:
base_name = match.group(1)
tag_file = image_path.with_name(base_name).with_suffix(".txt")
if tag_file.exists():
return tag_file
return None
if __name__ == "__main__":
main()
|