|
|
|
|
|
|
|
|
|
|
|
__conda_setup="$('/home/kade/miniconda3/bin/conda' 'shell.zsh' 'hook' 2> /dev/null)" |
|
if [ $? -eq 0 ]; then |
|
eval "$__conda_setup" |
|
else |
|
if [ -f "/home/kade/miniconda3/etc/profile.d/conda.sh" ]; then |
|
. "/home/kade/miniconda3/etc/profile.d/conda.sh" |
|
else |
|
export PATH="/home/kade/miniconda3/bin:$PATH" |
|
fi |
|
fi |
|
unset __conda_setup |
|
|
|
|
|
|
|
conda activate sdscripts |
|
|
|
NAME="cotw-v1s400" |
|
TRAINING_DIR="/home/kade/datasets/curse_of_the_worgen" |
|
OUTPUT_DIR="/home/kade/output_dir" |
|
|
|
|
|
|
|
args=( |
|
# Model |
|
--pretrained_model_name_or_path=/home/kade/ComfyUI/models/checkpoints/ponyDiffusionV6XL_v6StartWithThisOne.safetensors |
|
# Keep Tokens |
|
--keep_tokens=1 |
|
--keep_tokens_separator="|||" |
|
# Output, logging |
|
--output_dir="$OUTPUT_DIR/$NAME" |
|
--output_name="$NAME" |
|
--log_prefix="$NAME-" |
|
--log_with=tensorboard |
|
--logging_dir="$OUTPUT_DIR/logs" |
|
--seed=1728871242 |
|
# Dataset |
|
--train_data_dir="$TRAINING_DIR" |
|
--dataset_repeats=1 |
|
--resolution="1024,1024" |
|
--enable_bucket |
|
--bucket_reso_steps=32 |
|
--min_bucket_reso=256 |
|
--max_bucket_reso=2048 |
|
--flip_aug |
|
--shuffle_caption |
|
--cache_latents |
|
--cache_latents_to_disk |
|
--max_data_loader_n_workers=8 |
|
--persistent_data_loader_workers |
|
# Network config |
|
--network_dim=8 |
|
--network_alpha=4 |
|
--network_module="lycoris.kohya" |
|
--network_args |
|
"preset=full" |
|
"conv_dim=64" |
|
"conv_alpha=2" |
|
"rank_dropout=0" |
|
"module_dropout=0" |
|
"use_tucker=False" |
|
"use_scalar=False" |
|
"rank_dropout_scale=False" |
|
"algo=lokr" |
|
"dora_wd=True" |
|
"train_norm=False" |
|
--network_dropout=0 |
|
# Optimizer config |
|
--optimizer_type=FCompass |
|
--train_batch_size=12 |
|
--gradient_accumulation_steps=4 |
|
--max_grad_norm=1 |
|
--gradient_checkpointing |
|
#--lr_warmup_steps=6 |
|
#--scale_weight_norms=1 |
|
# LR Scheduling |
|
--max_train_steps=400 |
|
--learning_rate=0.0002 |
|
--unet_lr=0.0002 |
|
--text_encoder_lr=0.0001 |
|
--lr_scheduler="cosine" |
|
--lr_scheduler_args="num_cycles=0.375" |
|
# Noise |
|
#--multires_noise_iterations=12 |
|
#--multires_noise_discount=0.4 |
|
#--min_snr_gamma=1 |
|
# Optimization, details |
|
--no_half_vae |
|
--sdpa |
|
--mixed_precision="bf16" |
|
# Saving |
|
--save_model_as="safetensors" |
|
--save_precision="fp16" |
|
--save_every_n_steps=100 |
|
# Saving States |
|
#--save_state |
|
# Either resume from a saved state |
|
#--resume="$OUTPUT_DIR/wolflink-vfucks400" # Resume from saved state |
|
#--skip_until_initial_step |
|
# Or from a checkpoint |
|
#--network_weights="$OUTPUT_DIR/wolflink-vfucks400/wolflink-vfucks400-step00000120.safetensors" # Resume from checkpoint (not needed with state, i think) |
|
#--initial_step=120 |
|
# Sampling |
|
--sample_every_n_steps=100 |
|
--sample_prompts="$TRAINING_DIR/sample-prompts.txt" |
|
--sample_sampler="euler_a" |
|
--caption_extension=".txt" |
|
) |
|
|
|
cd ~/source/repos/sd-scripts |
|
|
|
python "./sdxl_train_network.py" "${args[@]}" |
|
cd ~ |
|
|
|
|