Merge branch 'main' of hf.co:/k4d3/toolkit
Browse files- __pycache__/e6db_reader.cpython-312.pyc +0 -0
- data/tag2idx.json.gz +3 -0
- data/tags.txt.gz +3 -0
- data/tags_categories.bin.gz +3 -0
- demo.py +7 -0
- e6db_reader.py +331 -0
- joy +6 -0
__pycache__/e6db_reader.cpython-312.pyc
ADDED
Binary file (16.5 kB). View file
|
|
data/tag2idx.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b6d0566323e99297d88d9cb6d8f7403e0f5eebc65670a71f303753a97f9786b
|
3 |
+
size 3840505
|
data/tags.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc537f3afe6ae8c152670ba7aa871989286d9139d7be8b1c40cb53ea36cafe0f
|
3 |
+
size 2630619
|
data/tags_categories.bin.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3ba9a95809e680f40a15a41d57a507630eca5f87ca8ee3518ed56aff662413e
|
3 |
+
size 109543
|
demo.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from e6db_reader import TagNormalizer, tag_categories, tag_category2id
|
2 |
+
|
3 |
+
tn = TagNormalizer('data')
|
4 |
+
tn.map_inputs(lambda tag, tid: tag.replace('_', ' '))
|
5 |
+
|
6 |
+
for tag in ['pokemon', 'pikachu', 'charizard', 'loona']:
|
7 |
+
print(tag, tn.get_category(tag))
|
e6db_reader.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"Python only utils (no dependencies)"
|
2 |
+
import gzip
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Callable, Iterable
|
9 |
+
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
tag_categories = [
|
13 |
+
"general",
|
14 |
+
"artist",
|
15 |
+
None, # Invalid catid
|
16 |
+
"copyright",
|
17 |
+
"character",
|
18 |
+
"species",
|
19 |
+
"invalid",
|
20 |
+
"meta",
|
21 |
+
"lore",
|
22 |
+
"pool",
|
23 |
+
]
|
24 |
+
tag_category2id = {v: k for k, v in enumerate(tag_categories) if v}
|
25 |
+
tag_categories_colors = [
|
26 |
+
"#b4c7d9",
|
27 |
+
"#f2ac08",
|
28 |
+
None, # Invalid catid
|
29 |
+
"#d0d",
|
30 |
+
"#0a0",
|
31 |
+
"#ed5d1f",
|
32 |
+
"#ff3d3d",
|
33 |
+
"#fff",
|
34 |
+
"#282",
|
35 |
+
"wheat",
|
36 |
+
]
|
37 |
+
tag_categories_alt_colors = [
|
38 |
+
"#2e76b4",
|
39 |
+
"#fbd67f",
|
40 |
+
None, # Invalid catid
|
41 |
+
"#ff5eff",
|
42 |
+
"#2bff2b",
|
43 |
+
"#f6b295",
|
44 |
+
"#ffbdbd",
|
45 |
+
"#666",
|
46 |
+
"#5fdb5f",
|
47 |
+
"#d0b27a",
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
def load_tags(data_dir):
|
52 |
+
"""
|
53 |
+
Load tag data, returns a tuple `(tag2idx, idx2tag, tag_categories)`
|
54 |
+
|
55 |
+
* `tag2idx`: dict mapping tag and aliases to numerical ids
|
56 |
+
* `idx2tag`: list mapping numerical id to tag string
|
57 |
+
* `tag_categories`: byte string mapping numerical id to categories
|
58 |
+
"""
|
59 |
+
data_dir = Path(data_dir)
|
60 |
+
with gzip.open(data_dir / "tags.txt.gz", "rt", encoding="utf-8") as fd:
|
61 |
+
idx2tag = fd.read().split("\n")
|
62 |
+
if not idx2tag[-1]:
|
63 |
+
idx2tag = idx2tag[:-1]
|
64 |
+
with gzip.open(data_dir / "tag2idx.json.gz", "rb") as fp:
|
65 |
+
tag2idx = json.load(fp)
|
66 |
+
with gzip.open(data_dir / "tags_categories.bin.gz", "rb") as fp:
|
67 |
+
tag_categories = fp.read()
|
68 |
+
logging.info(f"Loaded {len(idx2tag)} tags, {len(tag2idx)} tag2id mappings")
|
69 |
+
return tag2idx, idx2tag, tag_categories
|
70 |
+
|
71 |
+
|
72 |
+
def load_implications(data_dir):
|
73 |
+
"""
|
74 |
+
Load implication mappings. Returns a tuple `(implications, implications_rej)`
|
75 |
+
|
76 |
+
* `implications`: dict mapping numerical ids to a list of implied numerical
|
77 |
+
ids. Contains transitive implications.
|
78 |
+
* `implications_rej`: dict mapping tag strings to a list of implied
|
79 |
+
numerical ids. keys in implications_rej are tags that have a very little
|
80 |
+
usage (less than 2 posts) and don't have numerical ids associated with
|
81 |
+
them.
|
82 |
+
"""
|
83 |
+
with gzip.open(data_dir / "implications.json.gz", "rb") as fp:
|
84 |
+
implications = json.load(fp)
|
85 |
+
implications = {int(k): v for k, v in implications.items()}
|
86 |
+
with gzip.open(data_dir / "implications_rej.json.gz", "rb") as fp:
|
87 |
+
implications_rej = json.load(fp)
|
88 |
+
logger.info(
|
89 |
+
f"Loaded {len(implications)} implications + {len(implications_rej)} implication from tags without id"
|
90 |
+
)
|
91 |
+
return implications, implications_rej
|
92 |
+
|
93 |
+
|
94 |
+
def tag_rank_to_freq(rank: int) -> float:
|
95 |
+
"""Approximate the frequency of a tag given its rank"""
|
96 |
+
return math.exp(26.4284 * math.tanh(2.93505 * rank ** (-0.136501)) - 11.492)
|
97 |
+
|
98 |
+
|
99 |
+
def tag_freq_to_rank(freq: int) -> float:
|
100 |
+
"""Approximate the rank of a tag given its frequency"""
|
101 |
+
log_freq = math.log(freq)
|
102 |
+
return math.exp(
|
103 |
+
-7.57186
|
104 |
+
* (0.0465456 * log_freq - 1.24326)
|
105 |
+
* math.log(1.13045 - 0.0720383 * log_freq)
|
106 |
+
+ 12.1903
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
InMapFun = Callable[[str, int | None], list[str]]
|
111 |
+
OutMapFun = Callable[[str], list[str]]
|
112 |
+
|
113 |
+
|
114 |
+
class TagNormalizer:
|
115 |
+
"""
|
116 |
+
Map tag strings to numerical ids, and vice versa.
|
117 |
+
|
118 |
+
Multiple strings can be mapped to a single id, while each id maps to a
|
119 |
+
single string. As a result, the encode/decode process can be used to
|
120 |
+
normalize tags to canonical spelling.
|
121 |
+
|
122 |
+
See `add_input_mappings` for adding aliases, and `rename_output` for setting
|
123 |
+
the canonical spelling of a tag.
|
124 |
+
"""
|
125 |
+
|
126 |
+
def __init__(self, path_or_data: str | Path | tuple[dict, list, bytes]):
|
127 |
+
if isinstance(path_or_data, (Path, str)):
|
128 |
+
data = load_tags(path_or_data)
|
129 |
+
else:
|
130 |
+
data = path_or_data
|
131 |
+
self.tag2idx, self.idx2tag, self.tag_categories = data
|
132 |
+
|
133 |
+
def get_category(self, tag: int | str, as_string=True) -> int:
|
134 |
+
if isinstance(tag, str):
|
135 |
+
tag = self.encode(tag)
|
136 |
+
cat = self.tag_categories[tag]
|
137 |
+
if as_string:
|
138 |
+
return tag_categories[cat]
|
139 |
+
return cat
|
140 |
+
|
141 |
+
def encode(self, tag: str, default=None):
|
142 |
+
"Convert tag string to numerical id"
|
143 |
+
return self.tag2idx.get(tag, default)
|
144 |
+
|
145 |
+
def decode(self, tag: int | str):
|
146 |
+
"Convert numerical id to tag string"
|
147 |
+
if isinstance(tag, str):
|
148 |
+
return tag
|
149 |
+
return self.idx2tag[tag]
|
150 |
+
|
151 |
+
def get_reverse_mapping(self):
|
152 |
+
"""Return a list mapping id -> [ tag strings ]"""
|
153 |
+
res = [[] for i in range(len(self.idx2tag))]
|
154 |
+
for tag, tid in self.tag2idx.items():
|
155 |
+
res[tid].append(tag)
|
156 |
+
return res
|
157 |
+
|
158 |
+
def add_input_mappings(
|
159 |
+
self, tags: str | Iterable[str], to_tid: int | str, on_conflict="raise"
|
160 |
+
):
|
161 |
+
"""Associate tag strings to an id for recognition by `encode`
|
162 |
+
|
163 |
+
`on_conflict` defines what to do when the tag string is already mapped
|
164 |
+
to a different id:
|
165 |
+
|
166 |
+
* "raise": raise an ValueError (default)
|
167 |
+
* "warn": raise a warning
|
168 |
+
* "overwrite_rarest": make the tag point to the most frequently used tid
|
169 |
+
* "overwrite": silently overwrite the mapping
|
170 |
+
* "silent", or any other string: don't set the mapping
|
171 |
+
"""
|
172 |
+
tag2idx = self.tag2idx
|
173 |
+
if not isinstance(to_tid, int):
|
174 |
+
to_tid = tag2idx[to_tid]
|
175 |
+
if isinstance(tags, str):
|
176 |
+
tags = (tags,)
|
177 |
+
for tag in tags:
|
178 |
+
conflict = tag2idx.get(tag, to_tid)
|
179 |
+
if conflict != to_tid:
|
180 |
+
msg = f"mapping {tag!r}->{self.idx2tag[to_tid]!r}({to_tid}) conflicts with previous mapping {tag!r}->{self.idx2tag[conflict]!r}({conflict})."
|
181 |
+
if on_conflict == "raise":
|
182 |
+
raise ValueError(msg)
|
183 |
+
elif on_conflict == "warn":
|
184 |
+
logger.warning(msg)
|
185 |
+
elif on_conflict == "overwrite_rarest" and to_tid > conflict:
|
186 |
+
continue
|
187 |
+
elif on_conflict != "overwrite":
|
188 |
+
continue
|
189 |
+
tag2idx[tag] = to_tid
|
190 |
+
|
191 |
+
def remove_input_mappings(self, tags: str | Iterable[str]):
|
192 |
+
"""Remove tag strings from the mapping"""
|
193 |
+
if isinstance(tags, str):
|
194 |
+
tags = (tags,)
|
195 |
+
for tag in tags:
|
196 |
+
if tag in self.tag2idx:
|
197 |
+
del self.tag2idx[tag]
|
198 |
+
else:
|
199 |
+
logger.warning(f"tag {tag!r} is not a valid tag")
|
200 |
+
|
201 |
+
def rename_output(self, orig: int | str, dest: str):
|
202 |
+
"""Change the tag string associated with an id. Used by `decode`."""
|
203 |
+
if not isinstance(orig, int):
|
204 |
+
orig = self.tag2idx[orig]
|
205 |
+
self.idx2tag[orig] = dest
|
206 |
+
|
207 |
+
def map_inputs(
|
208 |
+
self, mapfun: InMapFun, prepopulate=True, on_conflict="raise"
|
209 |
+
) -> "TagNormalizer":
|
210 |
+
tag2idx = self.tag2idx.copy() if prepopulate else {}
|
211 |
+
res = type(self)((tag2idx, self.idx2tag, self.tag_categories))
|
212 |
+
for tag, tid in self.tag2idx.items():
|
213 |
+
res.add_input_mappings(mapfun(tag, tid), tid, on_conflict=on_conflict)
|
214 |
+
return res
|
215 |
+
|
216 |
+
def map_outputs(self, mapfun: OutMapFun) -> "TagNormalizer":
|
217 |
+
idx2tag = [mapfun(t, i) for i, t in enumerate(self.idx2tag)]
|
218 |
+
return type(self)((self.tag2idx, idx2tag, self.tag_categories))
|
219 |
+
|
220 |
+
def get(self, key: int | str, default=None):
|
221 |
+
"""
|
222 |
+
Returns the string tag associated with a numerical id, or conversely,
|
223 |
+
the id associated with a tag.
|
224 |
+
"""
|
225 |
+
if isinstance(key, int):
|
226 |
+
idx2tag = self.idx2tag
|
227 |
+
if key >= len(idx2tag):
|
228 |
+
return default
|
229 |
+
return idx2tag[key]
|
230 |
+
return self.tag2idx.get(key, default)
|
231 |
+
|
232 |
+
|
233 |
+
class TagSetNormalizer:
|
234 |
+
def __init__(self, path_or_data: str | Path | tuple[TagNormalizer, dict, dict]):
|
235 |
+
if isinstance(path_or_data, (Path, str)):
|
236 |
+
data = TagNormalizer(path_or_data), *load_implications(path_or_data)
|
237 |
+
else:
|
238 |
+
data = path_or_data
|
239 |
+
self.tag_normalizer, self.implications, self.implications_rej = data
|
240 |
+
|
241 |
+
def map_inputs(self, mapfun: InMapFun, on_conflict="raise") -> "TagSetNormalizer":
|
242 |
+
tag_normalizer = self.tag_normalizer.map_inputs(mapfun, on_conflict=on_conflict)
|
243 |
+
|
244 |
+
implications_rej: dict[str, list[str]] = {}
|
245 |
+
for tag_string, implied_ids in self.implications_rej.items():
|
246 |
+
for new_tag_string in mapfun(tag_string, None):
|
247 |
+
conflict = implications_rej.get(new_tag_string, implied_ids)
|
248 |
+
if conflict != implied_ids:
|
249 |
+
msg = f"mapping {tag_string!r}->{implied_ids} conflicts with previous mapping {tag_string!r}->{conflict}."
|
250 |
+
if on_conflict == "raise":
|
251 |
+
raise ValueError(msg)
|
252 |
+
elif on_conflict == "warn":
|
253 |
+
warnings.warn(msg)
|
254 |
+
elif on_conflict != "overwrite":
|
255 |
+
continue
|
256 |
+
implications_rej[new_tag_string] = implied_ids
|
257 |
+
|
258 |
+
res = type(self)((tag_normalizer, self.implications, implications_rej))
|
259 |
+
return res
|
260 |
+
|
261 |
+
def map_outputs(self, mapfun: OutMapFun) -> "TagSetNormalizer":
|
262 |
+
tag_normalizer = self.tag_normalizer.map_outputs(mapfun)
|
263 |
+
return type(self)((tag_normalizer, self.implications, self.implications_rej))
|
264 |
+
|
265 |
+
def get_implied(self, tag: int | str) -> list[int]:
|
266 |
+
if isinstance(tag, int):
|
267 |
+
return self.implications.get(tag, ())
|
268 |
+
else:
|
269 |
+
return self.implications_rej.get(tag, ())
|
270 |
+
|
271 |
+
def encode(
|
272 |
+
self,
|
273 |
+
tags: list[str],
|
274 |
+
keep_implied: bool | set[int] = False,
|
275 |
+
max_antecedent_rank: int | None = None,
|
276 |
+
drop_antecedent_rank: int | None = None,
|
277 |
+
) -> tuple[list[int | str], set[int]]:
|
278 |
+
"""
|
279 |
+
Encode a list of string as numerical ids and strip implied tags.
|
280 |
+
|
281 |
+
Unknown tags are returned as strings.
|
282 |
+
|
283 |
+
Returns :
|
284 |
+
|
285 |
+
* a list of tag ids and unknown tag strings,
|
286 |
+
* a list of implied tag ids.
|
287 |
+
"""
|
288 |
+
tag2idx = self.tag_normalizer.tag2idx
|
289 |
+
N = len(tag2idx)
|
290 |
+
max_antecedent_rank = max_antecedent_rank or N + 1
|
291 |
+
drop_antecedent_rank = drop_antecedent_rank or N + 1
|
292 |
+
get_implied = self.implications.get
|
293 |
+
get_implied_rej = self.implications_rej.get
|
294 |
+
|
295 |
+
stack = [tag2idx.get(tag, tag) for tag in tags[::-1]]
|
296 |
+
implied = set()
|
297 |
+
res = dict() # dict as a cheap ordered set
|
298 |
+
while stack:
|
299 |
+
tag = stack.pop()
|
300 |
+
if isinstance(tag, int):
|
301 |
+
antecedent_rank = tag
|
302 |
+
consequents = get_implied(tag)
|
303 |
+
else:
|
304 |
+
# the tag might be a very rare antecedent (less than two posts)
|
305 |
+
# that doesn't have a tag id
|
306 |
+
antecedent_rank = N
|
307 |
+
consequents = get_implied_rej(tag)
|
308 |
+
if consequents:
|
309 |
+
if antecedent_rank < max_antecedent_rank:
|
310 |
+
implied.update(consequents)
|
311 |
+
else:
|
312 |
+
# The implied tags from low frequency antecedent (high rank)
|
313 |
+
# are added to the list and instead the antecedent may be
|
314 |
+
# dropped
|
315 |
+
stack.extend(consequents)
|
316 |
+
if antecedent_rank >= drop_antecedent_rank:
|
317 |
+
continue
|
318 |
+
res[tag] = None
|
319 |
+
res = res.keys()
|
320 |
+
|
321 |
+
if not keep_implied:
|
322 |
+
res = [t for t in res if t not in implied]
|
323 |
+
elif isinstance(keep_implied, set):
|
324 |
+
res = [t for t in res if t not in implied or t in keep_implied]
|
325 |
+
else:
|
326 |
+
res = list(res)
|
327 |
+
return res, implied
|
328 |
+
|
329 |
+
def decode(self, tags: Iterable[int | str]) -> list[str]:
|
330 |
+
idx2tag = self.tag_normalizer.idx2tag
|
331 |
+
return [idx2tag[t] if isinstance(t, int) else t for t in tags]
|
joy
CHANGED
@@ -32,6 +32,7 @@ from transformers import (
|
|
32 |
PreTrainedTokenizerFast,
|
33 |
)
|
34 |
from torch import nn
|
|
|
35 |
|
36 |
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
37 |
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
|
@@ -80,6 +81,8 @@ CAPTION_TYPE_MAP = {
|
|
80 |
|
81 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
82 |
|
|
|
|
|
83 |
class ImageAdapter(nn.Module):
|
84 |
"""
|
85 |
Custom image adapter module for processing CLIP vision outputs.
|
@@ -466,6 +469,9 @@ def main():
|
|
466 |
if args.random_tags is not None and args.feed_from_tags is None:
|
467 |
parser.error("--random-tags can only be used when --feed-from-tags is enabled")
|
468 |
|
|
|
|
|
|
|
469 |
# Initialize and load models
|
470 |
joy_caption_model = JoyCaptionModel()
|
471 |
joy_caption_model.load_models()
|
|
|
32 |
PreTrainedTokenizerFast,
|
33 |
)
|
34 |
from torch import nn
|
35 |
+
from e6db_reader import TagNormalizer
|
36 |
|
37 |
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
38 |
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
|
|
|
81 |
|
82 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
83 |
|
84 |
+
E6DB_DATA = Path(__file__).resolve().parent / "data"
|
85 |
+
|
86 |
class ImageAdapter(nn.Module):
|
87 |
"""
|
88 |
Custom image adapter module for processing CLIP vision outputs.
|
|
|
469 |
if args.random_tags is not None and args.feed_from_tags is None:
|
470 |
parser.error("--random-tags can only be used when --feed-from-tags is enabled")
|
471 |
|
472 |
+
print('Loading e621 tag data')
|
473 |
+
tag_normalizer = TagNormalizer(E6DB_DATA)
|
474 |
+
|
475 |
# Initialize and load models
|
476 |
joy_caption_model = JoyCaptionModel()
|
477 |
joy_caption_model.load_models()
|