#!/usr/bin/env python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id) model = model.eval().cuda() # input your test image image_file = 'xxx.jpg' # plain texts OCR res = model.chat(tokenizer, image_file, ocr_type='ocr') # format texts OCR: # res = model.chat(tokenizer, image_file, ocr_type='format') # fine-grained OCR: # res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_box='') # res = model.chat(tokenizer, image_file, ocr_type='format', ocr_box='') # res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_color='') # res = model.chat(tokenizer, image_file, ocr_type='format', ocr_color='') # multi-crop OCR: # res = model.chat_crop(tokenizer, image_file, ocr_type='ocr') # res = model.chat_crop(tokenizer, image_file, ocr_type='format') # render the formatted OCR results: # res = model.chat(tokenizer, image_file, ocr_type='format', render=True, save_render_file = './demo.html') print(res)