#!/usr/bin/env zsh # # >>> conda initialize >>> # !! Contents within this block are managed by 'conda init' !! __conda_setup="$('/home/kade/miniconda3/bin/conda' 'shell.zsh' 'hook' 2> /dev/null)" if [ $? -eq 0 ]; then eval "$__conda_setup" else if [ -f "/home/kade/miniconda3/etc/profile.d/conda.sh" ]; then . "/home/kade/miniconda3/etc/profile.d/conda.sh" else export PATH="/home/kade/miniconda3/bin:$PATH" fi fi unset __conda_setup # <<< conda initialize < conda activate sdscripts NAME="yyfriend-v1s2000" TRAINING_DIR="/home/kade/datasets/yyfriend" OUTPUT_DIR="/home/kade/flux_output_dir/$NAME" # Extract the number of steps from the NAME STEPS=$(echo $NAME | grep -oE '[0-9]+$') # If no number is found at the end of NAME, set a default value if [ -z "$STEPS" ]; then STEPS=4096 echo "No step count found in NAME. Using default value of \e[35m$STEPS\e[0m" else echo "Extracted \e[35m$STEPS\e[0m steps from NAME" fi args=( ## Model Paths --pretrained_model_name_or_path ~/ComfyUI/models/unet/flux1-dev.safetensors --clip_l ~/ComfyUI/models/clip/clip_l.safetensors --t5xxl ~/ComfyUI/models/clip/t5xxl_fp16.safetensors --ae ~/ComfyUI/models/vae/ae.safetensors ## Network Arguments # NOTE: Bad idea to train T5! #--network_args # "train_t5xxl=True" ## Timestep Sampling --timestep_sampling shift # `--discrete_flow_shift` is the discrete flow shift for the Euler Discrete Scheduler, # default is 3.0 (same as SD3). --discrete_flow_shift 3.1582 # `--model_prediction_type` is how to interpret and process the model prediction. # * `raw`: use as is, same as x-flux # * `additive`: add to noisy input # * `sigma_scaled`: apply sigma scaling, same as SD3 --model_prediction_type raw --guidance_scale 1.0 # NOTE: In kohya's experiments, # `--timestep_sampling shift --discrete_flow_shift 3.1582 --model_prediction_type raw --guidance_scale 1.0` # (with the default `l2` `loss_type`) seems to work better. # # NOTE: The existing `--loss_type` option may be useful for FLUX.1 training. The default is `l2`. #--loss_type l2 # # Latents --cache_latents_to_disk --save_model_as safetensors --sdpa --persistent_data_loader_workers --max_data_loader_n_workers 2 --seed 42 --max_train_steps=$STEPS --gradient_checkpointing --mixed_precision bf16 --optimizer_type=ClybW --save_precision bf16 --network_module networks.lora_flux --network_dim 4 --learning_rate 5e-4 --cache_text_encoder_outputs --cache_text_encoder_outputs_to_disk --fp8_base --highvram --dataset_config "$TRAINING_DIR/config.toml" --output_dir $OUTPUT_DIR --output_name $NAME ## Sample Prompts --sample_prompts="$TRAINING_DIR/sample-prompts.txt" --sample_every_n_steps=20 --sample_sampler="euler" --sample_at_first --save_every_n_steps=100 ) cd ~/source/repos/sd-scripts-sd3 python "./flux_train_network.py" "${args[@]}" cd ~