#!/usr/bin/env zsh # >>> conda initialize >>> # !! Contents within this block are managed by 'conda init' !! __conda_setup="$('/home/kade/miniconda3/bin/conda' 'shell.zsh' 'hook' 2> /dev/null)" if [ $? -eq 0 ]; then eval "$__conda_setup" else if [ -f "/home/kade/miniconda3/etc/profile.d/conda.sh" ]; then . "/home/kade/miniconda3/etc/profile.d/conda.sh" else export PATH="/home/kade/miniconda3/bin:$PATH" fi fi unset __conda_setup # <<< conda initialize <<< conda activate sdscripts NAME="by_chunie-v3s1200" TRAINING_DIR="/home/kade/datasets/by_chunie" OUTPUT_DIR="/home/kade/output_dir" # alpha=1 @ dim=16 is the same lr than alpha=4 @ dim=256 # --min_snr_gamma=1 args=( # ⚠️ TODO: Benchmark... --debiased_estimation_loss # ⚠️ TODO: What does this do? Does it even work? --max_token_length=225 # Keep Tokens --keep_tokens=1 --keep_tokens_separator="|||" # Model --pretrained_model_name_or_path=/home/kade/ComfyUI/models/checkpoints/ponyDiffusionV6XL_v6StartWithThisOne.safetensors # Output, logging --output_dir="$OUTPUT_DIR/$NAME" --output_name="$NAME" --log_prefix="$NAME-" --log_with=tensorboard --logging_dir="$OUTPUT_DIR/logs" --seed=1728871242 # Dataset --train_data_dir="$TRAINING_DIR" --dataset_repeats=1 --resolution="1024,1024" --enable_bucket --bucket_reso_steps=64 --min_bucket_reso=256 --max_bucket_reso=2048 --flip_aug --shuffle_caption --cache_latents --cache_latents_to_disk --max_data_loader_n_workers=8 --persistent_data_loader_workers # Network config --network_dim=100000 # ⚠️ TODO: Plot --network_alpha=64 --network_module="lycoris.kohya" --network_args "preset=full" "conv_dim=100000" "decompose_both=False" "conv_alpha=64" "rank_dropout=0" "module_dropout=0" "use_tucker=False" "use_scalar=False" "rank_dropout_scale=False" "algo=lokr" "bypass_mode=False" "factor=32" "use_cp=True" "dora_wd=True" "train_norm=False" --network_dropout=0 # Optimizer config --optimizer_type=FCompass --train_batch_size=8 --gradient_accumulation_steps=6 --max_grad_norm=1 --gradient_checkpointing --lr_warmup_steps=0 #--scale_weight_norms=1 # LR Scheduling --max_train_steps=3072 --learning_rate=0.0005 --unet_lr=0.0002 --text_encoder_lr=0.0001 --lr_scheduler="cosine" --lr_scheduler_args="num_cycles=0.375" # Noise --multires_noise_iterations=12 --multires_noise_discount=0.4 #--min_snr_gamma=1 # Optimization, details --no_half_vae --sdpa --mixed_precision="bf16" # Saving --save_model_as="safetensors" --save_precision="fp16" --save_every_n_steps=100 # Saving States #--save_state # Either resume from a saved state #--resume="$OUTPUT_DIR/wolflink-vfucks400" # Resume from saved state #--skip_until_initial_step # Or from a checkpoint #--network_weights="$OUTPUT_DIR/wolflink-vfucks400/wolflink-vfucks400-step00000120.safetensors" # Resume from checkpoint (not needed with state, i think) #--initial_step=120 # Sampling --sample_every_n_steps=20 --sample_prompts="$TRAINING_DIR/sample-prompts.txt" --sample_sampler="euler_a" --caption_extension=".txt" ) cd ~/source/repos/sd-scripts #accelerate launch --num_cpu_threads_per_process=2 python "./sdxl_train_network.py" "${args[@]}" cd ~