kSaluja commited on
Commit
a99f00d
1 Parent(s): 1eb3584

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: new-test-model
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # new-test-model
19
+
20
+ This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0962
23
+ - Precision: 0.9704
24
+ - Recall: 0.9766
25
+ - F1: 0.9735
26
+ - Accuracy: 0.9791
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 5
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 151 | 0.1872 | 0.9295 | 0.9405 | 0.9349 | 0.9535 |
58
+ | No log | 2.0 | 302 | 0.1417 | 0.9574 | 0.9652 | 0.9613 | 0.9679 |
59
+ | No log | 3.0 | 453 | 0.1028 | 0.9676 | 0.9693 | 0.9684 | 0.9742 |
60
+ | 0.3037 | 4.0 | 604 | 0.1063 | 0.9676 | 0.9696 | 0.9686 | 0.9743 |
61
+ | 0.3037 | 5.0 | 755 | 0.0962 | 0.9704 | 0.9766 | 0.9735 | 0.9791 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.18.0
67
+ - Pytorch 1.10.0+cu111
68
+ - Datasets 2.1.0
69
+ - Tokenizers 0.12.1