File size: 4,659 Bytes
89455ef
73f1049
89455ef
 
 
 
 
 
 
 
 
73f1049
 
89455ef
 
 
73f1049
89455ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# https://huggingface.co/qresearch/llama-3.1-8B-vision-378/blob/main/modeling_llamavision.py

import torch
import torch.nn as nn
from transformers import (
    PreTrainedModel,
    AutoModelForCausalLM,
    AutoModel,
    SiglipImageProcessor,
)
from .configuration_llamavision import LlamavisionConfig


class ProjectionModule(nn.Module):
    def __init__(self, mm_hidden_size=1152, hidden_size=4096):
        super(ProjectionModule, self).__init__()

        # Directly set up the sequential model
        self.model = nn.Sequential(
            nn.Linear(mm_hidden_size, hidden_size),
            nn.GELU(),
            nn.Linear(hidden_size, hidden_size),
        )

    def forward(self, x):
        return self.model(x)


class Llamavision(PreTrainedModel):
    config_class = LlamavisionConfig

    def __init__(self, config):
        super().__init__(config)

        self.vision_model = AutoModel.from_config(self.config.vision_config)
        self.text_model = AutoModelForCausalLM.from_config(self.config.text_config)
        self.processor = SiglipImageProcessor()
        self.mm_projector = ProjectionModule(
            mm_hidden_size=config.vision_config.hidden_size,
            hidden_size=config.text_config.hidden_size,
        )

    @property
    def device(self):
        return self.text_model.device

    def encode_image(self, image):
        image = image.convert("RGB")
        image = self.processor(
            images=image,
            return_tensors="pt",
            do_resize=True,
            size={"height": 378, "width": 378},
        )["pixel_values"].to(
            device=self.vision_model.device, dtype=self.vision_model.dtype
        )
        with torch.no_grad():
            return self.vision_model(image, output_hidden_states=True).hidden_states[-2]

    def input_embeds(self, prompt, image_embeds, tokenizer):
        def _tokenize(txt):
            return tokenizer(
                txt, return_tensors="pt", add_special_tokens=False
            ).input_ids.to(self.device)

        text_emb = self.text_model.get_input_embeddings()

        embeds = []

        tokenized_prompt = _tokenize(prompt)
        if (
            tokenizer.bos_token_id is not None
            and tokenized_prompt[0][0] != tokenizer.bos_token_id
        ):
            embeds.append(
                text_emb(torch.tensor([[tokenizer.bos_token_id]], device=self.device))
            )

        projected_image_embeds = self.mm_projector(image_embeds.to(self.device))
        embeds.append(projected_image_embeds)

        embeds.append(text_emb(tokenized_prompt))

        return torch.cat(embeds, dim=1)

    def get_input_embeddings(self):
        return self.text_model.get_input_embeddings()

    def generate(
        self,
        image_embeds,
        prompt,
        tokenizer,
        max_new_tokens=128,
        **kwargs,
    ):
        generate_config = {
            "eos_token_id": [
                tokenizer.eos_token_id,
                tokenizer.convert_tokens_to_ids("<|eot_id|>"),
            ],
            "bos_token_id": tokenizer.bos_token_id,
            "pad_token_id": tokenizer.pad_token_id,
            "max_new_tokens": max_new_tokens,
            **kwargs,
        }

        with torch.no_grad():
            inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
            
            attention_mask = torch.ones(
                inputs_embeds.shape[:2],
                dtype=torch.long,
                device=inputs_embeds.device
            )
            
            output_ids = self.text_model.generate(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                **generate_config
            )

        return tokenizer.batch_decode(output_ids, skip_special_tokens=True)

    def answer_question(self, image, question, tokenizer, **kwargs):
        image_embeds = self.encode_image(image)

        chat = [
            {
                "role": "system",
                "content": "You are a helpful AI assistant that can see images and answer questions about them.",
            },
            {"role": "user", "content": question},
        ]
        prompt = tokenizer.apply_chat_template(
            chat, tokenize=False, add_generation_prompt=True
        )

        # Generate the answer
        with torch.no_grad():
            output = self.generate(
                image_embeds=image_embeds,
                prompt=prompt,
                tokenizer=tokenizer,
                **kwargs,
            )[0]

        # Clean and return the answer
        cleaned_answer = output.strip()
        return cleaned_answer