JW17 commited on
Commit
fe1724b
·
verified ·
1 Parent(s): 2314e31

Update paper bibtex

Browse files
Files changed (1) hide show
  1. README.md +27 -4
README.md CHANGED
@@ -50,8 +50,11 @@ model-index:
50
  # **Mistral-ORPO-⍺ (7B)**
51
 
52
  **Mistral-ORPO** is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using the *odds ratio preference optimization (ORPO)*. With ORPO, the model directly learns the preference without the supervised fine-tuning warmup phase. **Mistral-ORPO-⍺** is fine-tuned exclusively on [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
 
53
 
54
- ## Model Performance
 
 
55
 
56
  |Model Name|Size|Align|MT-Bench|AlpacaEval 1.0|AlpacaEval 2.0|
57
  |:--------|:--------------:|:--------------:|:-------------------:|:------------:|:------------:|
@@ -62,11 +65,18 @@ model-index:
62
  |Llama-2-Chat |7B|RLHF|6.27|71.37|4.96|
63
  |Llama-2-Chat |13B|RLHF|6.65|81.09|7.70|
64
 
65
- ## MT-Bench
 
 
 
 
 
 
 
66
 
67
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6415c043486c7c9a5d151583/zZvNuUFVLp6jeSvYIbdDN.png)
68
 
69
- ## Inference
70
 
71
  ```python
72
  from transformers import AutoModelForCausalLM, AutoTokenizer
@@ -92,4 +102,17 @@ response = tokenizer.batch_decode(output)
92
  #Hi! How are you doing?</s>
93
  #<|assistant|>
94
  #I'm doing well, thank you! How are you?</s>
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  ```
 
50
  # **Mistral-ORPO-⍺ (7B)**
51
 
52
  **Mistral-ORPO** is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using the *odds ratio preference optimization (ORPO)*. With ORPO, the model directly learns the preference without the supervised fine-tuning warmup phase. **Mistral-ORPO-⍺** is fine-tuned exclusively on [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
53
+ - **Github Repository**: https://github.com/xfactlab/orpo
54
 
55
+ ## 👍 **Model Performance**
56
+
57
+ ### 1) AlpacaEval & MT-Bench
58
 
59
  |Model Name|Size|Align|MT-Bench|AlpacaEval 1.0|AlpacaEval 2.0|
60
  |:--------|:--------------:|:--------------:|:-------------------:|:------------:|:------------:|
 
65
  |Llama-2-Chat |7B|RLHF|6.27|71.37|4.96|
66
  |Llama-2-Chat |13B|RLHF|6.65|81.09|7.70|
67
 
68
+ ### 2) IFEval
69
+
70
+ | **Model Type** | **Prompt-Strict** | **Prompt-Loose** | **Inst-Strict** | **Inst-Loose** |
71
+ |--------------------|:-----------------:|:----------------:|:---------------:|:--------------:|
72
+ | **Mistral-ORPO-⍺** | 0.5009 | 0.5083 | 0.5995 | 0.6163 |
73
+ | **Mistral-ORPO-β** | 0.5287 | 0.5564 | 0.6355 | 0.6619 |
74
+
75
+ ## 🗺️ **MT-Bench by Category**
76
 
77
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6415c043486c7c9a5d151583/1Ifpt0ljCfJPEoZAqlqqy.png)
78
 
79
+ ## 🖥️ **Inference**
80
 
81
  ```python
82
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
102
  #Hi! How are you doing?</s>
103
  #<|assistant|>
104
  #I'm doing well, thank you! How are you?</s>
105
+ ```
106
+
107
+ ## 📎 **Citation**
108
+
109
+ ```
110
+ @misc{hong2024orpo,
111
+ title={ORPO: Monolithic Preference Optimization without Reference Model},
112
+ author={Jiwoo Hong and Noah Lee and James Thorne},
113
+ year={2024},
114
+ eprint={2403.07691},
115
+ archivePrefix={arXiv},
116
+ primaryClass={cs.CL}
117
+ }
118
  ```