bnjmnmarie commited on
Commit
2df5a65
1 Parent(s): 5b2afaa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -3
README.md CHANGED
@@ -1,3 +1,41 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ tags:
6
+ - auto-gptq
7
+ - AutoRound
8
+ license: apache-2.0
9
+ ---
10
+
11
+
12
+ ## Model Details
13
+
14
+ This is [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) quantized with [AutoRound](https://github.com/intel/auto-round/tree/main) (asymmetric quantization) and serialized with the GPTQ format in 4-bit. The model has been created, tested, and evaluated by The Kaitchup.
15
+
16
+ Details on the quantization process and how to use the model here:
17
+ [The Best Quantization Methods to Run Llama 3.1 on Your GPU](https://newsletter.kaitchup.com/p/the-best-quantization-methods-to)
18
+
19
+ It is possible to fine-tune an adapter on top of it following the QLoRA methodology. More about this here:
20
+ [QLoRA with AutoRound: Cheaper and Better LLM Fine-tuning on Your GPU](https://newsletter.kaitchup.com/p/qlora-with-autoround-cheaper-and)
21
+
22
+ I used these hyperparameters for quantization:
23
+
24
+ ```
25
+ bits, group_size = 4, 128
26
+
27
+ autoround = AutoRound(model, tokenizer, nsamples=512, iters=1000, low_gpu_mem_usage=False, bits=bits, group_size=group_size)
28
+
29
+ autoround.quantize()
30
+ output_dir = "./tmp_autoround"
31
+ autoround.save_quantized(output_dir, format='auto_gptq', inplace=True)
32
+ ```
33
+
34
+ Evaluation results:
35
+
36
+ ![arc_challenge, musr, gpqa, mmlu_pro, mmlu….png](https://cdn-uploads.huggingface.co/production/uploads/64b93e6bd6c468ac7536607e/ExiQHtJf981JcUsHcbZW9.png)
37
+
38
+
39
+ - **Developed by:** [The Kaitchup](https://newsletter.kaitchup.com/)
40
+ - **Language(s) (NLP):** English
41
+ - **License:** Apache 2.0 license