File size: 2,430 Bytes
a5359bf
 
 
 
 
 
9e08afd
 
 
 
 
a5359bf
 
9e08afd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3d8068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5359bf
 
 
 
 
 
 
 
9e08afd
 
 
 
 
 
a5359bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-cased-ner-conll2003
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: conll2003
      type: conll2003
      args: conll2003
    metrics:
    - name: Precision
      type: precision
      value: 0.9438052359513089
    - name: Recall
      type: recall
      value: 0.9525412319084483
    - name: F1
      type: f1
      value: 0.9481531116508919
    - name: Accuracy
      type: accuracy
      value: 0.9910634321093416
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9116307653519484
      verified: true
    - name: Precision
      type: precision
      value: 0.9366103911345081
      verified: true
    - name: Recall
      type: recall
      value: 0.9262526113340186
      verified: true
    - name: F1
      type: f1
      value: 0.9314027058794109
      verified: true
    - name: loss
      type: loss
      value: 0.4366346299648285
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-cased-ner-conll2003

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0355
- Precision: 0.9438
- Recall: 0.9525
- F1: 0.9482
- Accuracy: 0.9911

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.19.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.1.0
- Tokenizers 0.12.1