kambehmw commited on
Commit
6d75e2e
1 Parent(s): 9aba38e

kambehmw/ppo-LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 245.52 +/- 21.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4b5283710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4b52837a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4b5283830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4b52838c0>", "_build": "<function ActorCriticPolicy._build at 0x7fb4b5283950>", "forward": "<function ActorCriticPolicy.forward at 0x7fb4b52839e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4b5283a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb4b5283b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4b5283b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4b5283c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4b5283cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb4b52a8180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655649952.5612879, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAJoQgPtcbejpLiMY7ZrUBOTfkYzw2r+I5AACAPwAAgD/zmCA/v7w0vrG0tjv6FRi6P10IvuDVhjoAAIA/AACAPxTIB7/Dwko909WRObsL4Tdnv6c+fPEFuAAAgD8AAIA/mgFiPMNxUbpRqkE71WcYOH+MHrrw4PG5AACAPwAAgD+AU1G93W1FPnxUpz2SmEy+8ZVlPRWwgD0AAAAAAAAAAIamED6kqxS7CmPVOypyULm4DDC8FosvugAAgD8AAIA/I+YCPyEFHb6yvYI8MWuwvMis1r2DJ5A9AACAPwAAgD+a7Jq9SHeUusryd7zHBg+9FhqsO4gn+j0AAIA/AAAAAI10k72vpnU9vsoPPRdKSb5Hr4E9rromvQAAAAAAAAAAysOOPtdQbzzeZGA7vAZkOUTSAj7uSSC6AACAPwAAgD/Nayg+gTGmPyaIkz6ZbJK+6J4gPvj9MD4AAAAAAAAAADNliDwUZIW6SkcWvHIAGL1C4726N6aEuwAAAAAAAAAAWlT+vmCwXz9ZKCC9YlqCvqtjBD1yjno8AAAAAAAAAADN6Be9FISMuhD1xzshMFM2etj3Oe4jSjUAAIA/AACAP55ECb85AAU++me3O31PTTkZu8c9RGE+OgAAgD8AAIA/ZrLaviwnFj7TBVW9nSZHvnEo5Ty2ZuA5AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5GpkV9p2Y0CUhpRSlIwBbJRN6AOMAXSUR0CCP635vcagdX2UKGgGaAloD0MI5QrvchEoW0CUhpRSlGgVTegDaBZHQIJtCSq2jO91fZQoaAZoCWgPQwjr4GBvYjZVQJSGlFKUaBVN6ANoFkdAgnEPphWo33V9lChoBmgJaA9DCFQ57Sk5HltAlIaUUpRoFU3oA2gWR0CCfiO3DvVmdX2UKGgGaAloD0MIjLrW3idlYUCUhpRSlGgVTegDaBZHQIJ/OqrBCUp1fZQoaAZoCWgPQwjRH5p5cu1fQJSGlFKUaBVN6ANoFkdAgoEsTN+so3V9lChoBmgJaA9DCG02VmKeFlhAlIaUUpRoFU3oA2gWR0CCkPeQdS2qdX2UKGgGaAloD0MI7Es2HmxDVkCUhpRSlGgVTegDaBZHQIKTadtl7MR1fZQoaAZoCWgPQwhVTKWfcOtcQJSGlFKUaBVN6ANoFkdAgpR0TL4etHV9lChoBmgJaA9DCHrDfeTWaFlAlIaUUpRoFU3oA2gWR0CCm1Z13dKvdX2UKGgGaAloD0MIkPXU6quhT8CUhpRSlGgVTRwBaBZHQIKhZmqYJE91fZQoaAZoCWgPQwjfjJqvksc+QJSGlFKUaBVNQgFoFkdAgqUOk+HJtHV9lChoBmgJaA9DCDMa+bziTlxAlIaUUpRoFU3oA2gWR0CCqMK77Kq5dX2UKGgGaAloD0MI9UiD21raYUCUhpRSlGgVTegDaBZHQIKplRxcVxl1fZQoaAZoCWgPQwgbgA2IEHcCQJSGlFKUaBVL92gWR0CCsBdN34bkdX2UKGgGaAloD0MIV3vYCwUjZ0CUhpRSlGgVTR4DaBZHQIK0NvKlpGp1fZQoaAZoCWgPQwi0ccRafIrmv5SGlFKUaBVNOAFoFkdAgrVX+l0o0HV9lChoBmgJaA9DCKmFkskp1WBAlIaUUpRoFU3oA2gWR0CCwwTnJT2ndX2UKGgGaAloD0MIByeiX1u3LECUhpRSlGgVTRcBaBZHQILLBg3Lmp51fZQoaAZoCWgPQwiXyXA8nzVgQJSGlFKUaBVN6ANoFkdAgs5wA+6iCnV9lChoBmgJaA9DCNpyLsVVHVtAlIaUUpRoFU3oA2gWR0CC3s2OQyRCdX2UKGgGaAloD0MIiIVa07wZW0CUhpRSlGgVTegDaBZHQILiNDBuXNV1fZQoaAZoCWgPQwi/u5UlOvVOQJSGlFKUaBVN6ANoFkdAgw/lajesP3V9lChoBmgJaA9DCIHptG6DZlTAlIaUUpRoFU05AWgWR0CDEz2MbWEsdX2UKGgGaAloD0MIwap6+Z1NWUCUhpRSlGgVTegDaBZHQIMUNHSWqtJ1fZQoaAZoCWgPQwjT2cngKCBUQJSGlFKUaBVN6ANoFkdAgySU/wAlwHV9lChoBmgJaA9DCHYyOEpevSbAlIaUUpRoFU0aAWgWR0CDLRVe8f3fdX2UKGgGaAloD0MItp4hHLNTXUCUhpRSlGgVTegDaBZHQIM6Y9C/oJR1fZQoaAZoCWgPQwiTUWUYd49YQJSGlFKUaBVN6ANoFkdAg0LxJNCZ4XV9lChoBmgJaA9DCLg81owMsg9AlIaUUpRoFUvqaBZHQINFI+jdpIt1fZQoaAZoCWgPQwjsFKsGYYFWQJSGlFKUaBVN6ANoFkdAg0mLFXJYDHV9lChoBmgJaA9DCKw41VqYk1tAlIaUUpRoFU3oA2gWR0CDTTQwblzVdX2UKGgGaAloD0MIdHtJY7R0QECUhpRSlGgVTegDaBZHQINRDJjlPrR1fZQoaAZoCWgPQwiynITSFyRdQJSGlFKUaBVN6ANoFkdAg1jirT6SDHV9lChoBmgJaA9DCDYdAdys82JAlIaUUpRoFU3oA2gWR0CDXUSSvC/HdX2UKGgGaAloD0MISn7Er9h/YUCUhpRSlGgVTegDaBZHQINeduJk5IZ1fZQoaAZoCWgPQwiOHyqNmAkgQJSGlFKUaBVL9WgWR0CDYPmdRR/FdX2UKGgGaAloD0MIWB6kp8hBD8CUhpRSlGgVTUwBaBZHQIN0BAt4A0d1fZQoaAZoCWgPQwjJy5pY4HldQJSGlFKUaBVN6ANoFkdAg3YZAQg9vHV9lChoBmgJaA9DCBGo/kEkVFhAlIaUUpRoFU3oA2gWR0CDeRZoPCl8dX2UKGgGaAloD0MIuhPsv845XUCUhpRSlGgVTegDaBZHQIOIXs5XEIh1fZQoaAZoCWgPQwiEZ0KTxJJSQJSGlFKUaBVN6ANoFkdAg7hkk0JnhHV9lChoBmgJaA9DCL72zJKA9GBAlIaUUpRoFU3oA2gWR0CDu5v0h/y5dX2UKGgGaAloD0MIQ6ooXmVtLECUhpRSlGgVS+toFkdAg7w0SZjQRnV9lChoBmgJaA9DCK7zb5f9QGFAlIaUUpRoFU3oA2gWR0CDvHHR1HOKdX2UKGgGaAloD0MI3xYs1QVUPcCUhpRSlGgVTQgBaBZHQIPNavkili11fZQoaAZoCWgPQwgiiV5GsVdeQJSGlFKUaBVN6ANoFkdAg9K5d4Vym3V9lChoBmgJaA9DCIrnbAGh411AlIaUUpRoFU3oA2gWR0CD3kmsvIwNdX2UKGgGaAloD0MI9KW3PxdOV8CUhpRSlGgVTVIBaBZHQIPlSJ9Aood1fZQoaAZoCWgPQwiQoWMHlX1hQJSGlFKUaBVN6ANoFkdAg+gmpda+vnV9lChoBmgJaA9DCE0SS8rd715AlIaUUpRoFU3oA2gWR0CD8tdnkDISdX2UKGgGaAloD0MItHQF24isXUCUhpRSlGgVTegDaBZHQIP4gLy+YdB1fZQoaAZoCWgPQwioUUgyK5tjQJSGlFKUaBVN6ANoFkdAhAA0PH1e0HV9lChoBmgJaA9DCPdbO1GShWJAlIaUUpRoFU3oA2gWR0CEBH8+A3DOdX2UKGgGaAloD0MIyhZJu9EWW0CUhpRSlGgVTegDaBZHQIQFsUGmk311fZQoaAZoCWgPQwgWwmosYRJbQJSGlFKUaBVN6ANoFkdAhAgpe3QUpXV9lChoBmgJaA9DCDXQfM7d9V1AlIaUUpRoFU3oA2gWR0CEGjsWweNldX2UKGgGaAloD0MIYAZjRKI7X0CUhpRSlGgVTegDaBZHQIQcc83dbgV1fZQoaAZoCWgPQwiNXg1QGhxhQJSGlFKUaBVN6ANoFkdAhEHH1e0G/3V9lChoBmgJaA9DCD60jxX8plRAlIaUUpRoFU3oA2gWR0CEan0dRzikdX2UKGgGaAloD0MIveKpR5q1YUCUhpRSlGgVTegDaBZHQIRrmq1gH/t1fZQoaAZoCWgPQwgRqtTsgbVkQJSGlFKUaBVNCQNoFkdAhHyjDTBqK3V9lChoBmgJaA9DCGRd3EYDeV1AlIaUUpRoFU3oA2gWR0CEgRlDneSCdX2UKGgGaAloD0MIFJM3wMzmXUCUhpRSlGgVTegDaBZHQISGqxmkFfR1fZQoaAZoCWgPQwiQTfIjfqk4wJSGlFKUaBVNLAFoFkdAhJFtL+PzWnV9lChoBmgJaA9DCGh5HtydAU5AlIaUUpRoFU3oA2gWR0CEkuqVhTfjdX2UKGgGaAloD0MIWmd8X1wmY0CUhpRSlGgVTeICaBZHQISYWy/sVtZ1fZQoaAZoCWgPQwjohqbs9KpeQJSGlFKUaBVN6ANoFkdAhJzZhz/6wnV9lChoBmgJaA9DCPCK4H8rxltAlIaUUpRoFU3oA2gWR0CEpHB55Z8sdX2UKGgGaAloD0MID2H8NO4dWECUhpRSlGgVTegDaBZHQISoK1TisGR1fZQoaAZoCWgPQwj8Uj9vKiIWwJSGlFKUaBVNZgFoFkdAhK3NX5nDi3V9lChoBmgJaA9DCCWQErs24GBAlIaUUpRoFU3oA2gWR0CEr5V2A5JcdX2UKGgGaAloD0MI+5C3XH10YUCUhpRSlGgVTegDaBZHQISzgk1Mue11fZQoaAZoCWgPQwhB0xIro0tVQJSGlFKUaBVN6ANoFkdAhLSHzH0btXV9lChoBmgJaA9DCLmLMEW5PC7AlIaUUpRoFU0KAWgWR0CEtwd+5OJtdX2UKGgGaAloD0MITPp7KTzKXUCUhpRSlGgVTegDaBZHQITF23MINVl1fZQoaAZoCWgPQwjLSSh9ISNTQJSGlFKUaBVN6ANoFkdAhMelhPTG53V9lChoBmgJaA9DCDEIrBxaPkvAlIaUUpRoFU1BAWgWR0CEyBZdv864dX2UKGgGaAloD0MI1xLyQc9yNUCUhpRSlGgVTS8BaBZHQITRZomG/N91fZQoaAZoCWgPQwgI5ujxey9ZQJSGlFKUaBVN6ANoFkdAhOi0Mw1zhnV9lChoBmgJaA9DCIaqmEo/+VxAlIaUUpRoFU3oA2gWR0CE6aVh1DBudX2UKGgGaAloD0MIqFMe3QjVXECUhpRSlGgVTegDaBZHQIUdoVTJhfB1fZQoaAZoCWgPQwh9XBsqxmU1wJSGlFKUaBVNQwFoFkdAhSH8z67/XHV9lChoBmgJaA9DCH/4+e/B5GFAlIaUUpRoFU3oA2gWR0CFJ45AhStOdX2UKGgGaAloD0MIW5iFds4FYUCUhpRSlGgVTegDaBZHQIUx96JIlMR1fZQoaAZoCWgPQwj3sBcK2CRdQJSGlFKUaBVN6ANoFkdAhTNPZZjhDXV9lChoBmgJaA9DCOLNGryvqiTAlIaUUpRoFU0gAWgWR0CFNDlKbrkbdX2UKGgGaAloD0MI2Qkvwam+VECUhpRSlGgVTegDaBZHQIU73tBv73x1fZQoaAZoCWgPQwgIym37HsNfQJSGlFKUaBVN6ANoFkdAhUZl7MPjGXV9lChoBmgJaA9DCDSg3oyaDV1AlIaUUpRoFU3oA2gWR0CFTA4d6sySdX2UKGgGaAloD0MIStQLPs22XUCUhpRSlGgVTegDaBZHQIVSDlkpZwJ1fZQoaAZoCWgPQwgANiBC3MJhQJSGlFKUaBVN6ANoFkdAhVM256MR6HV9lChoBmgJaA9DCGb5ugz/MFpAlIaUUpRoFU3oA2gWR0CFVeR5C4SZdX2UKGgGaAloD0MI12oPeyE/Y0CUhpRSlGgVTcABaBZHQIVa1jslb/x1fZQoaAZoCWgPQwjtZkY/GjRbQJSGlFKUaBVN6ANoFkdAhWUDFAE+xHV9lChoBmgJaA9DCL5Nf/YjLFFAlIaUUpRoFU3oA2gWR0CFZsuDBdledX2UKGgGaAloD0MIQnqKHCKrXECUhpRSlGgVTegDaBZHQIVnOW2PT5R1fZQoaAZoCWgPQwh0stR6v9kuwJSGlFKUaBVNTgFoFkdAhWwLYf4h2XV9lChoBmgJaA9DCPSkTGpoU0PAlIaUUpRoFU0UAWgWR0CFelsfJV81dX2UKGgGaAloD0MIYAZjRKIWXECUhpRSlGgVTegDaBZHQIWFACr92ox1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fad185c4d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fad185c4dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fad185c4e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fad185c4ee0>", "_build": "<function ActorCriticPolicy._build at 0x7fad185c4f70>", "forward": "<function ActorCriticPolicy.forward at 0x7fad185c8040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fad185c80d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fad185c8160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fad185c81f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fad185c8280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fad185c8310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fad185c83a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fad185c5ec0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680280518875138926, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPQYT70GS8/v3CSPT5TmL5KAro9Oma+vQAAAAAAAAAAM173PGQcxz7NMJA9AmVuvolo7zwL5149AAAAAAAAAAAzE7m9wwF2urLBPrqr/Ti1yiqSOiD9XjkAAIA/AACAPwAApbq4zry5wtXeurWS97UvSgK7s54BOgAAgD8AAIA/ZnplPa4vgbp7i5O5vCSuNRNpEju1Kak4AACAPwAAgD/NQsM8XGtJuubbejtKCTA4HUeHuSYSJroAAIA/AACAP+aEPT1cc0q6QgAWuHp3l7OyH6k6pxotNwAAgD8AAIA/jZ+mPWLEhz8oUBY+8F2bvib2jD1I0YA6AAAAAAAAAACAPu69cPilP3IobL7pnYO+SWfvvRI3fb0AAAAAAAAAAObFOr2PMjK6ayzzunGipLU+/Pu6sn0POgAAgD8AAIA/pqwNPj1sSLtF29I5F3sKt4Gsnbx2H/y4AACAPwAAgD+znhO99thRukkkvzq8rSa0CDIxu75+2rkAAIA/AACAP2auiDuPRiq6xpRyOwQCPza2aZi5fmWPugAAgD8AAIA/zRRvO1xzd7qKqJg7JvkwNgRiU7pjiK66AACAPwAAgD/A7vQ9w4F9uhV0Q7rah6k2duKLu+baazkAAIA/AACAPw15jT6wtPY+9qhIvhE7Xr7bMjQ8WXiQvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISwLU1DL6YkCUhpRSlIwBbJRN6AOMAXSUR0CVLMyxA0KrdX2UKGgGaAloD0MIp5GWylvTYECUhpRSlGgVTegDaBZHQJUvhcKPXCl1fZQoaAZoCWgPQwjO3hltVcdeQJSGlFKUaBVN6ANoFkdAlTUnr+o993V9lChoBmgJaA9DCBE0ZhJ1jWJAlIaUUpRoFU3oA2gWR0CVRkCVrylOdX2UKGgGaAloD0MIFt16TQ/ZYUCUhpRSlGgVTegDaBZHQJVG/6ZYxL11fZQoaAZoCWgPQwirksg+SApiQJSGlFKUaBVN6ANoFkdAlUcvr8iwCHV9lChoBmgJaA9DCCAldm3vqGZAlIaUUpRoFU3oA2gWR0CVS0d2gWaddX2UKGgGaAloD0MIfcucLgu7Y0CUhpRSlGgVTegDaBZHQJVNFQ2uPmx1fZQoaAZoCWgPQwgeqFMe3WZiQJSGlFKUaBVN6ANoFkdAlVID+zdDY3V9lChoBmgJaA9DCBA//z34Z2ZAlIaUUpRoFU3oA2gWR0CVU1w8W9DhdX2UKGgGaAloD0MIQDTz5JpUY0CUhpRSlGgVTegDaBZHQJVWQIVuaWp1fZQoaAZoCWgPQwjmJJS+EA1kQJSGlFKUaBVN6ANoFkdAlVdwBYFJQXV9lChoBmgJaA9DCJI81/fh8GBAlIaUUpRoFU3oA2gWR0CVcFzijtXxdX2UKGgGaAloD0MIJ/p8lJG6ZkCUhpRSlGgVTegDaBZHQJV4/Ck43m51fZQoaAZoCWgPQwjTZpyGKBxmQJSGlFKUaBVN6ANoFkdAlXk92cJ+lXV9lChoBmgJaA9DCP9cNGQ8dWNAlIaUUpRoFU3oA2gWR0CVe//5+H8CdX2UKGgGaAloD0MIFt7lIj60YECUhpRSlGgVTegDaBZHQJWDZ4cFQl91fZQoaAZoCWgPQwg6I0p7g3tdQJSGlFKUaBVN6ANoFkdAlYXTKYAsCnV9lChoBmgJaA9DCFVoIJbNTBhAlIaUUpRoFU0dAWgWR0CVilvc8DB/dX2UKGgGaAloD0MIN/3ZjxS6X0CUhpRSlGgVTegDaBZHQJWKaGyon8d1fZQoaAZoCWgPQwhAMbJkjgBiQJSGlFKUaBVN6ANoFkdAlZXcz2vjfnV9lChoBmgJaA9DCJLOwMjLC15AlIaUUpRoFU3oA2gWR0CVlov24/eMdX2UKGgGaAloD0MI58WJr3YXYECUhpRSlGgVTegDaBZHQJWWuJEYwZh1fZQoaAZoCWgPQwjQudv1UrdlQJSGlFKUaBVN6ANoFkdAlZq7Llmvn3V9lChoBmgJaA9DCPdY+tAFjWBAlIaUUpRoFU3oA2gWR0CVnHhVlwtKdX2UKGgGaAloD0MI7Z+nAQOAbUCUhpRSlGgVTUACaBZHQJWdHnIQvpR1fZQoaAZoCWgPQwiM3NPVHexkQJSGlFKUaBVN6ANoFkdAlaFEHpr1unV9lChoBmgJaA9DCKRskbSbnmNAlIaUUpRoFU3oA2gWR0CVoqqgAZKndX2UKGgGaAloD0MIxFp8CgDaYECUhpRSlGgVTegDaBZHQJWljGn4wh51fZQoaAZoCWgPQwg2r+qsFpleQJSGlFKUaBVN6ANoFkdAlab4fr8iwHV9lChoBmgJaA9DCMiW5euyxWJAlIaUUpRoFU3oA2gWR0CVxHGZNO/MdX2UKGgGaAloD0MI+rfLft1eYECUhpRSlGgVTegDaBZHQJXKsJdB0IV1fZQoaAZoCWgPQwgcmUf+4NJsQJSGlFKUaBVN+gFoFkdAlcrOT3Zf2XV9lChoBmgJaA9DCMdHizMGSG1AlIaUUpRoFU1hAWgWR0CVzq5TIeYEdX2UKGgGaAloD0MI6KBLOHREZECUhpRSlGgVTegDaBZHQJXUHfCQ9zR1fZQoaAZoCWgPQwhkdha9Uw9nQJSGlFKUaBVN6ANoFkdAldcKwIMSb3V9lChoBmgJaA9DCIV4JF4eN2BAlIaUUpRoFU3oA2gWR0CV3AUfgaWHdX2UKGgGaAloD0MIdTxmoDImYkCUhpRSlGgVTegDaBZHQJXcFftx+8Z1fZQoaAZoCWgPQwgHeNLC5UVjQJSGlFKUaBVN6ANoFkdAles+biIcinV9lChoBmgJaA9DCIHqH0QyaWRAlIaUUpRoFU3oA2gWR0CV7IyDqW1MdX2UKGgGaAloD0MIJJhqZi2aY0CUhpRSlGgVTegDaBZHQJXyq7f51vF1fZQoaAZoCWgPQwiKP4o6c49jQJSGlFKUaBVN6ANoFkdAlfSnMQmNR3V9lChoBmgJaA9DCIpbBTHQn2JAlIaUUpRoFU3oA2gWR0CV9VfRNRFadX2UKGgGaAloD0MITmIQWLnXb0CUhpRSlGgVTUwBaBZHQJX1vYzzmOl1fZQoaAZoCWgPQwiiJCTSNp4ZwJSGlFKUaBVLpWgWR0CV906ClJpWdX2UKGgGaAloD0MInIaowh/KYECUhpRSlGgVTegDaBZHQJX5W9ugpSd1fZQoaAZoCWgPQwjjNEQV/jFlQJSGlFKUaBVN6ANoFkdAlfzxuwX67HV9lChoBmgJaA9DCOQPBp7762RAlIaUUpRoFU3oA2gWR0CV/fn1FpfydX2UKGgGaAloD0MIApzexfvmY0CUhpRSlGgVTegDaBZHQJYVlcAzYVZ1fZQoaAZoCWgPQwiqtpvgm1liQJSGlFKUaBVN6ANoFkdAlhwonF5v+HV9lChoBmgJaA9DCEFK7NreG11AlIaUUpRoFU3oA2gWR0CWHFUcXFcZdX2UKGgGaAloD0MIx4SYSyojZECUhpRSlGgVTegDaBZHQJYhj420iQl1fZQoaAZoCWgPQwgIPgYrToBmQJSGlFKUaBVN6ANoFkdAlillNxlxwXV9lChoBmgJaA9DCK01lNqLvV9AlIaUUpRoFU3oA2gWR0CWLM/+bVjJdX2UKGgGaAloD0MIpTLFHAQCZ0CUhpRSlGgVTegDaBZHQJYyDL9uP3l1fZQoaAZoCWgPQwgoCvSJPCxlQJSGlFKUaBVN6ANoFkdAlj/ejua4MHV9lChoBmgJaA9DCOZ0WUxstGFAlIaUUpRoFU3oA2gWR0CWRNGrjo6kdX2UKGgGaAloD0MIaxDmdi8yXUCUhpRSlGgVTegDaBZHQJZG9JSR8tx1fZQoaAZoCWgPQwh4RIXqZp1gQJSGlFKUaBVN6ANoFkdAlke/2wmmcnV9lChoBmgJaA9DCKkz95BwqmFAlIaUUpRoFU3oA2gWR0CWSC9cKPXDdX2UKGgGaAloD0MI9WVpp2asY0CUhpRSlGgVTegDaBZHQJZJ/pt78el1fZQoaAZoCWgPQwgMzuDvl09kQJSGlFKUaBVN6ANoFkdAlkxF6mfoR3V9lChoBmgJaA9DCO4E+6/zEWBAlIaUUpRoFU3oA2gWR0CWUFmIj4YadX2UKGgGaAloD0MIiqvKvqtCYECUhpRSlGgVTegDaBZHQJZRdtP557h1fZQoaAZoCWgPQwhqF9NM93hiQJSGlFKUaBVN6ANoFkdAllhGo3rD63V9lChoBmgJaA9DCNrk8EknEjpAlIaUUpRoFUv7aBZHQJZu2Z5Rjz91fZQoaAZoCWgPQwjv4ZLjzm9jQJSGlFKUaBVN6ANoFkdAlnQTENvwVnV9lChoBmgJaA9DCFUTRN0HE2VAlIaUUpRoFU3oA2gWR0CWdDBKL877dX2UKGgGaAloD0MIoijQJ/KLYkCUhpRSlGgVTegDaBZHQJZ3cAKfFrF1fZQoaAZoCWgPQwjlRpG1hvpwQJSGlFKUaBVNqwFoFkdAlnnqcurZJ3V9lChoBmgJaA9DCBDoTNrUzWBAlIaUUpRoFU3oA2gWR0CWfAE3bVSXdX2UKGgGaAloD0MIsW1RZgMxYUCUhpRSlGgVTegDaBZHQJZ+ZG6PKdR1fZQoaAZoCWgPQwiFI0il2DRdQJSGlFKUaBVN6ANoFkdAloLKf8MuvnV9lChoBmgJaA9DCNttF5rrv2NAlIaUUpRoFU3oA2gWR0CWkEA1NxlydX2UKGgGaAloD0MIwk8cQL/gX0CUhpRSlGgVTegDaBZHQJaWaJLuhK11fZQoaAZoCWgPQwiKrDWU2sdDQJSGlFKUaBVNHgFoFkdAlpbUd3jdYXV9lChoBmgJaA9DCNxHbk26P2hAlIaUUpRoFU3oA2gWR0CWmQq+rU9ZdX2UKGgGaAloD0MIrtaJy/H7X0CUhpRSlGgVTegDaBZHQJaZ97JGOMl1fZQoaAZoCWgPQwiLUdfa+4FgQJSGlFKUaBVN6ANoFkdAlpqBnOB193V9lChoBmgJaA9DCGTJHMs7LmZAlIaUUpRoFU3oA2gWR0CWouzcynDSdX2UKGgGaAloD0MIOrGH9jEHZECUhpRSlGgVTegDaBZHQJakCU0Nz8x1fZQoaAZoCWgPQwh8KTxodo9CQJSGlFKUaBVNEQFoFkdAlqbc4HX2/XV9lChoBmgJaA9DCNU/iGRIBWJAlIaUUpRoFU3oA2gWR0CWqRfYSQHSdX2UKGgGaAloD0MIlKXW+w1fYECUhpRSlGgVTegDaBZHQJapdrGipNt1fZQoaAZoCWgPQwjHD5VGTKZhQJSGlFKUaBVN6ANoFkdAlsB0O3DvVnV9lChoBmgJaA9DCIZxN4jWS2JAlIaUUpRoFU3oA2gWR0CWwI6N2ki2dX2UKGgGaAloD0MIJsed0sHwYkCUhpRSlGgVTegDaBZHQJbDk/s3Q2N1fZQoaAZoCWgPQwhnYroQq4BgQJSGlFKUaBVN6ANoFkdAlsX0qH4463V9lChoBmgJaA9DCBqk4Cnk9F5AlIaUUpRoFU3oA2gWR0CWyHtrsSkCdX2UKGgGaAloD0MI9Gvrp385YUCUhpRSlGgVTegDaBZHQJbLjYf4h2Z1fZQoaAZoCWgPQwhRg2kYPi9iQJSGlFKUaBVN6ANoFkdAlt8YzBRAKXV9lChoBmgJaA9DCBrh7UGIDmBAlIaUUpRoFU3oA2gWR0CW4xDArQPadX2UKGgGaAloD0MIPiR87++gZkCUhpRSlGgVTegDaBZHQJbkqZVn27F1fZQoaAZoCWgPQwjLnZlguOplQJSGlFKUaBVN6ANoFkdAluU5tix3V3V9lChoBmgJaA9DCAH8U6pE+2ZAlIaUUpRoFU3oA2gWR0CW5Yyad+XrdX2UKGgGaAloD0MIcyzvqgeBYECUhpRSlGgVTegDaBZHQJbr96E8JUp1fZQoaAZoCWgPQwhnuWx0TgFiQJSGlFKUaBVN6ANoFkdAluz8KohpxnV9lChoBmgJaA9DCFnC2hg7619AlIaUUpRoFU3oA2gWR0CW75srNGExdX2UKGgGaAloD0MINNk/T4P3YUCUhpRSlGgVTegDaBZHQJbxtMyrPt51fZQoaAZoCWgPQwg900uMZTBjQJSGlFKUaBVN6ANoFkdAlvIQnx8UmHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:016ed5819868d19741b127d657d06e937f8e5642f95feb483c743a559d135cd5
3
- size 144152
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63f35dec618964ece486fa1a1373cb26f91b255b06d47093a23614095b6612f0
3
+ size 147429
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.5.0
 
1
+ 1.7.0
ppo-LunarLander-v2/data CHANGED
@@ -1,28 +1,29 @@
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
- ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4b5283710>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4b52837a0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4b5283830>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4b52838c0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fb4b5283950>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fb4b52839e0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4b5283a70>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fb4b5283b00>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4b5283b90>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4b5283c20>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4b5283cb0>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fb4b52a8180>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
  "dtype": "float32",
27
  "_shape": [
28
  8
@@ -35,32 +36,32 @@
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
  "n": 4,
40
  "_shape": [],
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 507904,
46
- "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1655649952.5612879,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAJoQgPtcbejpLiMY7ZrUBOTfkYzw2r+I5AACAPwAAgD/zmCA/v7w0vrG0tjv6FRi6P10IvuDVhjoAAIA/AACAPxTIB7/Dwko909WRObsL4Tdnv6c+fPEFuAAAgD8AAIA/mgFiPMNxUbpRqkE71WcYOH+MHrrw4PG5AACAPwAAgD+AU1G93W1FPnxUpz2SmEy+8ZVlPRWwgD0AAAAAAAAAAIamED6kqxS7CmPVOypyULm4DDC8FosvugAAgD8AAIA/I+YCPyEFHb6yvYI8MWuwvMis1r2DJ5A9AACAPwAAgD+a7Jq9SHeUusryd7zHBg+9FhqsO4gn+j0AAIA/AAAAAI10k72vpnU9vsoPPRdKSb5Hr4E9rromvQAAAAAAAAAAysOOPtdQbzzeZGA7vAZkOUTSAj7uSSC6AACAPwAAgD/Nayg+gTGmPyaIkz6ZbJK+6J4gPvj9MD4AAAAAAAAAADNliDwUZIW6SkcWvHIAGL1C4726N6aEuwAAAAAAAAAAWlT+vmCwXz9ZKCC9YlqCvqtjBD1yjno8AAAAAAAAAADN6Be9FISMuhD1xzshMFM2etj3Oe4jSjUAAIA/AACAP55ECb85AAU++me3O31PTTkZu8c9RGE+OgAAgD8AAIA/ZrLaviwnFj7TBVW9nSZHvnEo5Ty2ZuA5AAAAAAAAAACUdJRiLg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
@@ -69,13 +70,13 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gASVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5GpkV9p2Y0CUhpRSlIwBbJRN6AOMAXSUR0CCP635vcagdX2UKGgGaAloD0MI5QrvchEoW0CUhpRSlGgVTegDaBZHQIJtCSq2jO91fZQoaAZoCWgPQwjr4GBvYjZVQJSGlFKUaBVN6ANoFkdAgnEPphWo33V9lChoBmgJaA9DCFQ57Sk5HltAlIaUUpRoFU3oA2gWR0CCfiO3DvVmdX2UKGgGaAloD0MIjLrW3idlYUCUhpRSlGgVTegDaBZHQIJ/OqrBCUp1fZQoaAZoCWgPQwjRH5p5cu1fQJSGlFKUaBVN6ANoFkdAgoEsTN+so3V9lChoBmgJaA9DCG02VmKeFlhAlIaUUpRoFU3oA2gWR0CCkPeQdS2qdX2UKGgGaAloD0MI7Es2HmxDVkCUhpRSlGgVTegDaBZHQIKTadtl7MR1fZQoaAZoCWgPQwhVTKWfcOtcQJSGlFKUaBVN6ANoFkdAgpR0TL4etHV9lChoBmgJaA9DCHrDfeTWaFlAlIaUUpRoFU3oA2gWR0CCm1Z13dKvdX2UKGgGaAloD0MIkPXU6quhT8CUhpRSlGgVTRwBaBZHQIKhZmqYJE91fZQoaAZoCWgPQwjfjJqvksc+QJSGlFKUaBVNQgFoFkdAgqUOk+HJtHV9lChoBmgJaA9DCDMa+bziTlxAlIaUUpRoFU3oA2gWR0CCqMK77Kq5dX2UKGgGaAloD0MI9UiD21raYUCUhpRSlGgVTegDaBZHQIKplRxcVxl1fZQoaAZoCWgPQwgbgA2IEHcCQJSGlFKUaBVL92gWR0CCsBdN34bkdX2UKGgGaAloD0MIV3vYCwUjZ0CUhpRSlGgVTR4DaBZHQIK0NvKlpGp1fZQoaAZoCWgPQwi0ccRafIrmv5SGlFKUaBVNOAFoFkdAgrVX+l0o0HV9lChoBmgJaA9DCKmFkskp1WBAlIaUUpRoFU3oA2gWR0CCwwTnJT2ndX2UKGgGaAloD0MIByeiX1u3LECUhpRSlGgVTRcBaBZHQILLBg3Lmp51fZQoaAZoCWgPQwiXyXA8nzVgQJSGlFKUaBVN6ANoFkdAgs5wA+6iCnV9lChoBmgJaA9DCNpyLsVVHVtAlIaUUpRoFU3oA2gWR0CC3s2OQyRCdX2UKGgGaAloD0MIiIVa07wZW0CUhpRSlGgVTegDaBZHQILiNDBuXNV1fZQoaAZoCWgPQwi/u5UlOvVOQJSGlFKUaBVN6ANoFkdAgw/lajesP3V9lChoBmgJaA9DCIHptG6DZlTAlIaUUpRoFU05AWgWR0CDEz2MbWEsdX2UKGgGaAloD0MIwap6+Z1NWUCUhpRSlGgVTegDaBZHQIMUNHSWqtJ1fZQoaAZoCWgPQwjT2cngKCBUQJSGlFKUaBVN6ANoFkdAgySU/wAlwHV9lChoBmgJaA9DCHYyOEpevSbAlIaUUpRoFU0aAWgWR0CDLRVe8f3fdX2UKGgGaAloD0MItp4hHLNTXUCUhpRSlGgVTegDaBZHQIM6Y9C/oJR1fZQoaAZoCWgPQwiTUWUYd49YQJSGlFKUaBVN6ANoFkdAg0LxJNCZ4XV9lChoBmgJaA9DCLg81owMsg9AlIaUUpRoFUvqaBZHQINFI+jdpIt1fZQoaAZoCWgPQwjsFKsGYYFWQJSGlFKUaBVN6ANoFkdAg0mLFXJYDHV9lChoBmgJaA9DCKw41VqYk1tAlIaUUpRoFU3oA2gWR0CDTTQwblzVdX2UKGgGaAloD0MIdHtJY7R0QECUhpRSlGgVTegDaBZHQINRDJjlPrR1fZQoaAZoCWgPQwiynITSFyRdQJSGlFKUaBVN6ANoFkdAg1jirT6SDHV9lChoBmgJaA9DCDYdAdys82JAlIaUUpRoFU3oA2gWR0CDXUSSvC/HdX2UKGgGaAloD0MISn7Er9h/YUCUhpRSlGgVTegDaBZHQINeduJk5IZ1fZQoaAZoCWgPQwiOHyqNmAkgQJSGlFKUaBVL9WgWR0CDYPmdRR/FdX2UKGgGaAloD0MIWB6kp8hBD8CUhpRSlGgVTUwBaBZHQIN0BAt4A0d1fZQoaAZoCWgPQwjJy5pY4HldQJSGlFKUaBVN6ANoFkdAg3YZAQg9vHV9lChoBmgJaA9DCBGo/kEkVFhAlIaUUpRoFU3oA2gWR0CDeRZoPCl8dX2UKGgGaAloD0MIuhPsv845XUCUhpRSlGgVTegDaBZHQIOIXs5XEIh1fZQoaAZoCWgPQwiEZ0KTxJJSQJSGlFKUaBVN6ANoFkdAg7hkk0JnhHV9lChoBmgJaA9DCL72zJKA9GBAlIaUUpRoFU3oA2gWR0CDu5v0h/y5dX2UKGgGaAloD0MIQ6ooXmVtLECUhpRSlGgVS+toFkdAg7w0SZjQRnV9lChoBmgJaA9DCK7zb5f9QGFAlIaUUpRoFU3oA2gWR0CDvHHR1HOKdX2UKGgGaAloD0MI3xYs1QVUPcCUhpRSlGgVTQgBaBZHQIPNavkili11fZQoaAZoCWgPQwgiiV5GsVdeQJSGlFKUaBVN6ANoFkdAg9K5d4Vym3V9lChoBmgJaA9DCIrnbAGh411AlIaUUpRoFU3oA2gWR0CD3kmsvIwNdX2UKGgGaAloD0MI9KW3PxdOV8CUhpRSlGgVTVIBaBZHQIPlSJ9Aood1fZQoaAZoCWgPQwiQoWMHlX1hQJSGlFKUaBVN6ANoFkdAg+gmpda+vnV9lChoBmgJaA9DCE0SS8rd715AlIaUUpRoFU3oA2gWR0CD8tdnkDISdX2UKGgGaAloD0MItHQF24isXUCUhpRSlGgVTegDaBZHQIP4gLy+YdB1fZQoaAZoCWgPQwioUUgyK5tjQJSGlFKUaBVN6ANoFkdAhAA0PH1e0HV9lChoBmgJaA9DCPdbO1GShWJAlIaUUpRoFU3oA2gWR0CEBH8+A3DOdX2UKGgGaAloD0MIyhZJu9EWW0CUhpRSlGgVTegDaBZHQIQFsUGmk311fZQoaAZoCWgPQwgWwmosYRJbQJSGlFKUaBVN6ANoFkdAhAgpe3QUpXV9lChoBmgJaA9DCDXQfM7d9V1AlIaUUpRoFU3oA2gWR0CEGjsWweNldX2UKGgGaAloD0MIYAZjRKI7X0CUhpRSlGgVTegDaBZHQIQcc83dbgV1fZQoaAZoCWgPQwiNXg1QGhxhQJSGlFKUaBVN6ANoFkdAhEHH1e0G/3V9lChoBmgJaA9DCD60jxX8plRAlIaUUpRoFU3oA2gWR0CEan0dRzikdX2UKGgGaAloD0MIveKpR5q1YUCUhpRSlGgVTegDaBZHQIRrmq1gH/t1fZQoaAZoCWgPQwgRqtTsgbVkQJSGlFKUaBVNCQNoFkdAhHyjDTBqK3V9lChoBmgJaA9DCGRd3EYDeV1AlIaUUpRoFU3oA2gWR0CEgRlDneSCdX2UKGgGaAloD0MIFJM3wMzmXUCUhpRSlGgVTegDaBZHQISGqxmkFfR1fZQoaAZoCWgPQwiQTfIjfqk4wJSGlFKUaBVNLAFoFkdAhJFtL+PzWnV9lChoBmgJaA9DCGh5HtydAU5AlIaUUpRoFU3oA2gWR0CEkuqVhTfjdX2UKGgGaAloD0MIWmd8X1wmY0CUhpRSlGgVTeICaBZHQISYWy/sVtZ1fZQoaAZoCWgPQwjohqbs9KpeQJSGlFKUaBVN6ANoFkdAhJzZhz/6wnV9lChoBmgJaA9DCPCK4H8rxltAlIaUUpRoFU3oA2gWR0CEpHB55Z8sdX2UKGgGaAloD0MID2H8NO4dWECUhpRSlGgVTegDaBZHQISoK1TisGR1fZQoaAZoCWgPQwj8Uj9vKiIWwJSGlFKUaBVNZgFoFkdAhK3NX5nDi3V9lChoBmgJaA9DCCWQErs24GBAlIaUUpRoFU3oA2gWR0CEr5V2A5JcdX2UKGgGaAloD0MI+5C3XH10YUCUhpRSlGgVTegDaBZHQISzgk1Mue11fZQoaAZoCWgPQwhB0xIro0tVQJSGlFKUaBVN6ANoFkdAhLSHzH0btXV9lChoBmgJaA9DCLmLMEW5PC7AlIaUUpRoFU0KAWgWR0CEtwd+5OJtdX2UKGgGaAloD0MITPp7KTzKXUCUhpRSlGgVTegDaBZHQITF23MINVl1fZQoaAZoCWgPQwjLSSh9ISNTQJSGlFKUaBVN6ANoFkdAhMelhPTG53V9lChoBmgJaA9DCDEIrBxaPkvAlIaUUpRoFU1BAWgWR0CEyBZdv864dX2UKGgGaAloD0MI1xLyQc9yNUCUhpRSlGgVTS8BaBZHQITRZomG/N91fZQoaAZoCWgPQwgI5ujxey9ZQJSGlFKUaBVN6ANoFkdAhOi0Mw1zhnV9lChoBmgJaA9DCIaqmEo/+VxAlIaUUpRoFU3oA2gWR0CE6aVh1DBudX2UKGgGaAloD0MIqFMe3QjVXECUhpRSlGgVTegDaBZHQIUdoVTJhfB1fZQoaAZoCWgPQwh9XBsqxmU1wJSGlFKUaBVNQwFoFkdAhSH8z67/XHV9lChoBmgJaA9DCH/4+e/B5GFAlIaUUpRoFU3oA2gWR0CFJ45AhStOdX2UKGgGaAloD0MIW5iFds4FYUCUhpRSlGgVTegDaBZHQIUx96JIlMR1fZQoaAZoCWgPQwj3sBcK2CRdQJSGlFKUaBVN6ANoFkdAhTNPZZjhDXV9lChoBmgJaA9DCOLNGryvqiTAlIaUUpRoFU0gAWgWR0CFNDlKbrkbdX2UKGgGaAloD0MI2Qkvwam+VECUhpRSlGgVTegDaBZHQIU73tBv73x1fZQoaAZoCWgPQwgIym37HsNfQJSGlFKUaBVN6ANoFkdAhUZl7MPjGXV9lChoBmgJaA9DCDSg3oyaDV1AlIaUUpRoFU3oA2gWR0CFTA4d6sySdX2UKGgGaAloD0MIStQLPs22XUCUhpRSlGgVTegDaBZHQIVSDlkpZwJ1fZQoaAZoCWgPQwgANiBC3MJhQJSGlFKUaBVN6ANoFkdAhVM256MR6HV9lChoBmgJaA9DCGb5ugz/MFpAlIaUUpRoFU3oA2gWR0CFVeR5C4SZdX2UKGgGaAloD0MI12oPeyE/Y0CUhpRSlGgVTcABaBZHQIVa1jslb/x1fZQoaAZoCWgPQwjtZkY/GjRbQJSGlFKUaBVN6ANoFkdAhWUDFAE+xHV9lChoBmgJaA9DCL5Nf/YjLFFAlIaUUpRoFU3oA2gWR0CFZsuDBdledX2UKGgGaAloD0MIQnqKHCKrXECUhpRSlGgVTegDaBZHQIVnOW2PT5R1fZQoaAZoCWgPQwh0stR6v9kuwJSGlFKUaBVNTgFoFkdAhWwLYf4h2XV9lChoBmgJaA9DCPSkTGpoU0PAlIaUUpRoFU0UAWgWR0CFelsfJV81dX2UKGgGaAloD0MIYAZjRKIWXECUhpRSlGgVTegDaBZHQIWFACr92ox1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
- ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 124,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,7 +87,7 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
 
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fad185c4d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fad185c4dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fad185c4e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fad185c4ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fad185c4f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fad185c8040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fad185c80d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fad185c8160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fad185c81f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fad185c8280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fad185c8310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fad185c83a0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fad185c5ec0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
  "observation_space": {
25
  ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
  "dtype": "float32",
28
  "_shape": [
29
  8
 
36
  },
37
  "action_space": {
38
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
  "n": 4,
41
  "_shape": [],
42
  "dtype": "int64",
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1680280518875138926,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPQYT70GS8/v3CSPT5TmL5KAro9Oma+vQAAAAAAAAAAM173PGQcxz7NMJA9AmVuvolo7zwL5149AAAAAAAAAAAzE7m9wwF2urLBPrqr/Ti1yiqSOiD9XjkAAIA/AACAPwAApbq4zry5wtXeurWS97UvSgK7s54BOgAAgD8AAIA/ZnplPa4vgbp7i5O5vCSuNRNpEju1Kak4AACAPwAAgD/NQsM8XGtJuubbejtKCTA4HUeHuSYSJroAAIA/AACAP+aEPT1cc0q6QgAWuHp3l7OyH6k6pxotNwAAgD8AAIA/jZ+mPWLEhz8oUBY+8F2bvib2jD1I0YA6AAAAAAAAAACAPu69cPilP3IobL7pnYO+SWfvvRI3fb0AAAAAAAAAAObFOr2PMjK6ayzzunGipLU+/Pu6sn0POgAAgD8AAIA/pqwNPj1sSLtF29I5F3sKt4Gsnbx2H/y4AACAPwAAgD+znhO99thRukkkvzq8rSa0CDIxu75+2rkAAIA/AACAP2auiDuPRiq6xpRyOwQCPza2aZi5fmWPugAAgD8AAIA/zRRvO1xzd7qKqJg7JvkwNgRiU7pjiK66AACAPwAAgD/A7vQ9w4F9uhV0Q7rah6k2duKLu+baazkAAIA/AACAPw15jT6wtPY+9qhIvhE7Xr7bMjQ8WXiQvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
  },
66
  "_last_original_obs": null,
67
  "_episode_num": 0,
 
70
  "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISwLU1DL6YkCUhpRSlIwBbJRN6AOMAXSUR0CVLMyxA0KrdX2UKGgGaAloD0MIp5GWylvTYECUhpRSlGgVTegDaBZHQJUvhcKPXCl1fZQoaAZoCWgPQwjO3hltVcdeQJSGlFKUaBVN6ANoFkdAlTUnr+o993V9lChoBmgJaA9DCBE0ZhJ1jWJAlIaUUpRoFU3oA2gWR0CVRkCVrylOdX2UKGgGaAloD0MIFt16TQ/ZYUCUhpRSlGgVTegDaBZHQJVG/6ZYxL11fZQoaAZoCWgPQwirksg+SApiQJSGlFKUaBVN6ANoFkdAlUcvr8iwCHV9lChoBmgJaA9DCCAldm3vqGZAlIaUUpRoFU3oA2gWR0CVS0d2gWaddX2UKGgGaAloD0MIfcucLgu7Y0CUhpRSlGgVTegDaBZHQJVNFQ2uPmx1fZQoaAZoCWgPQwgeqFMe3WZiQJSGlFKUaBVN6ANoFkdAlVID+zdDY3V9lChoBmgJaA9DCBA//z34Z2ZAlIaUUpRoFU3oA2gWR0CVU1w8W9DhdX2UKGgGaAloD0MIQDTz5JpUY0CUhpRSlGgVTegDaBZHQJVWQIVuaWp1fZQoaAZoCWgPQwjmJJS+EA1kQJSGlFKUaBVN6ANoFkdAlVdwBYFJQXV9lChoBmgJaA9DCJI81/fh8GBAlIaUUpRoFU3oA2gWR0CVcFzijtXxdX2UKGgGaAloD0MIJ/p8lJG6ZkCUhpRSlGgVTegDaBZHQJV4/Ck43m51fZQoaAZoCWgPQwjTZpyGKBxmQJSGlFKUaBVN6ANoFkdAlXk92cJ+lXV9lChoBmgJaA9DCP9cNGQ8dWNAlIaUUpRoFU3oA2gWR0CVe//5+H8CdX2UKGgGaAloD0MIFt7lIj60YECUhpRSlGgVTegDaBZHQJWDZ4cFQl91fZQoaAZoCWgPQwg6I0p7g3tdQJSGlFKUaBVN6ANoFkdAlYXTKYAsCnV9lChoBmgJaA9DCFVoIJbNTBhAlIaUUpRoFU0dAWgWR0CVilvc8DB/dX2UKGgGaAloD0MIN/3ZjxS6X0CUhpRSlGgVTegDaBZHQJWKaGyon8d1fZQoaAZoCWgPQwhAMbJkjgBiQJSGlFKUaBVN6ANoFkdAlZXcz2vjfnV9lChoBmgJaA9DCJLOwMjLC15AlIaUUpRoFU3oA2gWR0CVlov24/eMdX2UKGgGaAloD0MI58WJr3YXYECUhpRSlGgVTegDaBZHQJWWuJEYwZh1fZQoaAZoCWgPQwjQudv1UrdlQJSGlFKUaBVN6ANoFkdAlZq7Llmvn3V9lChoBmgJaA9DCPdY+tAFjWBAlIaUUpRoFU3oA2gWR0CVnHhVlwtKdX2UKGgGaAloD0MI7Z+nAQOAbUCUhpRSlGgVTUACaBZHQJWdHnIQvpR1fZQoaAZoCWgPQwiM3NPVHexkQJSGlFKUaBVN6ANoFkdAlaFEHpr1unV9lChoBmgJaA9DCKRskbSbnmNAlIaUUpRoFU3oA2gWR0CVoqqgAZKndX2UKGgGaAloD0MIxFp8CgDaYECUhpRSlGgVTegDaBZHQJWljGn4wh51fZQoaAZoCWgPQwg2r+qsFpleQJSGlFKUaBVN6ANoFkdAlab4fr8iwHV9lChoBmgJaA9DCMiW5euyxWJAlIaUUpRoFU3oA2gWR0CVxHGZNO/MdX2UKGgGaAloD0MI+rfLft1eYECUhpRSlGgVTegDaBZHQJXKsJdB0IV1fZQoaAZoCWgPQwgcmUf+4NJsQJSGlFKUaBVN+gFoFkdAlcrOT3Zf2XV9lChoBmgJaA9DCMdHizMGSG1AlIaUUpRoFU1hAWgWR0CVzq5TIeYEdX2UKGgGaAloD0MI6KBLOHREZECUhpRSlGgVTegDaBZHQJXUHfCQ9zR1fZQoaAZoCWgPQwhkdha9Uw9nQJSGlFKUaBVN6ANoFkdAldcKwIMSb3V9lChoBmgJaA9DCIV4JF4eN2BAlIaUUpRoFU3oA2gWR0CV3AUfgaWHdX2UKGgGaAloD0MIdTxmoDImYkCUhpRSlGgVTegDaBZHQJXcFftx+8Z1fZQoaAZoCWgPQwgHeNLC5UVjQJSGlFKUaBVN6ANoFkdAles+biIcinV9lChoBmgJaA9DCIHqH0QyaWRAlIaUUpRoFU3oA2gWR0CV7IyDqW1MdX2UKGgGaAloD0MIJJhqZi2aY0CUhpRSlGgVTegDaBZHQJXyq7f51vF1fZQoaAZoCWgPQwiKP4o6c49jQJSGlFKUaBVN6ANoFkdAlfSnMQmNR3V9lChoBmgJaA9DCIpbBTHQn2JAlIaUUpRoFU3oA2gWR0CV9VfRNRFadX2UKGgGaAloD0MITmIQWLnXb0CUhpRSlGgVTUwBaBZHQJX1vYzzmOl1fZQoaAZoCWgPQwiiJCTSNp4ZwJSGlFKUaBVLpWgWR0CV906ClJpWdX2UKGgGaAloD0MInIaowh/KYECUhpRSlGgVTegDaBZHQJX5W9ugpSd1fZQoaAZoCWgPQwjjNEQV/jFlQJSGlFKUaBVN6ANoFkdAlfzxuwX67HV9lChoBmgJaA9DCOQPBp7762RAlIaUUpRoFU3oA2gWR0CV/fn1FpfydX2UKGgGaAloD0MIApzexfvmY0CUhpRSlGgVTegDaBZHQJYVlcAzYVZ1fZQoaAZoCWgPQwiqtpvgm1liQJSGlFKUaBVN6ANoFkdAlhwonF5v+HV9lChoBmgJaA9DCEFK7NreG11AlIaUUpRoFU3oA2gWR0CWHFUcXFcZdX2UKGgGaAloD0MIx4SYSyojZECUhpRSlGgVTegDaBZHQJYhj420iQl1fZQoaAZoCWgPQwgIPgYrToBmQJSGlFKUaBVN6ANoFkdAlillNxlxwXV9lChoBmgJaA9DCK01lNqLvV9AlIaUUpRoFU3oA2gWR0CWLM/+bVjJdX2UKGgGaAloD0MIpTLFHAQCZ0CUhpRSlGgVTegDaBZHQJYyDL9uP3l1fZQoaAZoCWgPQwgoCvSJPCxlQJSGlFKUaBVN6ANoFkdAlj/ejua4MHV9lChoBmgJaA9DCOZ0WUxstGFAlIaUUpRoFU3oA2gWR0CWRNGrjo6kdX2UKGgGaAloD0MIaxDmdi8yXUCUhpRSlGgVTegDaBZHQJZG9JSR8tx1fZQoaAZoCWgPQwh4RIXqZp1gQJSGlFKUaBVN6ANoFkdAlke/2wmmcnV9lChoBmgJaA9DCKkz95BwqmFAlIaUUpRoFU3oA2gWR0CWSC9cKPXDdX2UKGgGaAloD0MI9WVpp2asY0CUhpRSlGgVTegDaBZHQJZJ/pt78el1fZQoaAZoCWgPQwgMzuDvl09kQJSGlFKUaBVN6ANoFkdAlkxF6mfoR3V9lChoBmgJaA9DCO4E+6/zEWBAlIaUUpRoFU3oA2gWR0CWUFmIj4YadX2UKGgGaAloD0MIiqvKvqtCYECUhpRSlGgVTegDaBZHQJZRdtP557h1fZQoaAZoCWgPQwhqF9NM93hiQJSGlFKUaBVN6ANoFkdAllhGo3rD63V9lChoBmgJaA9DCNrk8EknEjpAlIaUUpRoFUv7aBZHQJZu2Z5Rjz91fZQoaAZoCWgPQwjv4ZLjzm9jQJSGlFKUaBVN6ANoFkdAlnQTENvwVnV9lChoBmgJaA9DCFUTRN0HE2VAlIaUUpRoFU3oA2gWR0CWdDBKL877dX2UKGgGaAloD0MIoijQJ/KLYkCUhpRSlGgVTegDaBZHQJZ3cAKfFrF1fZQoaAZoCWgPQwjlRpG1hvpwQJSGlFKUaBVNqwFoFkdAlnnqcurZJ3V9lChoBmgJaA9DCBDoTNrUzWBAlIaUUpRoFU3oA2gWR0CWfAE3bVSXdX2UKGgGaAloD0MIsW1RZgMxYUCUhpRSlGgVTegDaBZHQJZ+ZG6PKdR1fZQoaAZoCWgPQwiFI0il2DRdQJSGlFKUaBVN6ANoFkdAloLKf8MuvnV9lChoBmgJaA9DCNttF5rrv2NAlIaUUpRoFU3oA2gWR0CWkEA1NxlydX2UKGgGaAloD0MIwk8cQL/gX0CUhpRSlGgVTegDaBZHQJaWaJLuhK11fZQoaAZoCWgPQwiKrDWU2sdDQJSGlFKUaBVNHgFoFkdAlpbUd3jdYXV9lChoBmgJaA9DCNxHbk26P2hAlIaUUpRoFU3oA2gWR0CWmQq+rU9ZdX2UKGgGaAloD0MIrtaJy/H7X0CUhpRSlGgVTegDaBZHQJaZ97JGOMl1fZQoaAZoCWgPQwiLUdfa+4FgQJSGlFKUaBVN6ANoFkdAlpqBnOB193V9lChoBmgJaA9DCGTJHMs7LmZAlIaUUpRoFU3oA2gWR0CWouzcynDSdX2UKGgGaAloD0MIOrGH9jEHZECUhpRSlGgVTegDaBZHQJakCU0Nz8x1fZQoaAZoCWgPQwh8KTxodo9CQJSGlFKUaBVNEQFoFkdAlqbc4HX2/XV9lChoBmgJaA9DCNU/iGRIBWJAlIaUUpRoFU3oA2gWR0CWqRfYSQHSdX2UKGgGaAloD0MIlKXW+w1fYECUhpRSlGgVTegDaBZHQJapdrGipNt1fZQoaAZoCWgPQwjHD5VGTKZhQJSGlFKUaBVN6ANoFkdAlsB0O3DvVnV9lChoBmgJaA9DCIZxN4jWS2JAlIaUUpRoFU3oA2gWR0CWwI6N2ki2dX2UKGgGaAloD0MIJsed0sHwYkCUhpRSlGgVTegDaBZHQJbDk/s3Q2N1fZQoaAZoCWgPQwhnYroQq4BgQJSGlFKUaBVN6ANoFkdAlsX0qH4463V9lChoBmgJaA9DCBqk4Cnk9F5AlIaUUpRoFU3oA2gWR0CWyHtrsSkCdX2UKGgGaAloD0MI9Gvrp385YUCUhpRSlGgVTegDaBZHQJbLjYf4h2Z1fZQoaAZoCWgPQwhRg2kYPi9iQJSGlFKUaBVN6ANoFkdAlt8YzBRAKXV9lChoBmgJaA9DCBrh7UGIDmBAlIaUUpRoFU3oA2gWR0CW4xDArQPadX2UKGgGaAloD0MIPiR87++gZkCUhpRSlGgVTegDaBZHQJbkqZVn27F1fZQoaAZoCWgPQwjLnZlguOplQJSGlFKUaBVN6ANoFkdAluU5tix3V3V9lChoBmgJaA9DCAH8U6pE+2ZAlIaUUpRoFU3oA2gWR0CW5Yyad+XrdX2UKGgGaAloD0MIcyzvqgeBYECUhpRSlGgVTegDaBZHQJbr96E8JUp1fZQoaAZoCWgPQwhnuWx0TgFiQJSGlFKUaBVN6ANoFkdAluz8KohpxnV9lChoBmgJaA9DCFnC2hg7619AlIaUUpRoFU3oA2gWR0CW75srNGExdX2UKGgGaAloD0MINNk/T4P3YUCUhpRSlGgVTegDaBZHQJbxtMyrPt51fZQoaAZoCWgPQwg900uMZTBjQJSGlFKUaBVN6ANoFkdAlvIQnx8UmHVlLg=="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 248,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
 
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3c8c173b2e034cba75cc96762cbbfd3eec89b95732c1ef6a5e0c43d200d223b9
3
- size 84829
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d71f21d6617974ddad9bcc421ee8ba5d1cbd1912564aa4a549fb337fe752581
3
+ size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cb44b7e8c30deb683aeb87a2c1d8672bc847e7e61cf35674e2e91e1d42709082
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0483476fe306dc7319560b0e26ac0fc39a60568867633c600d3930863d48b0e9
3
+ size 43393
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
- Python: 3.7.13
3
- Stable-Baselines3: 1.5.0
4
- PyTorch: 1.11.0+cu113
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5efdaaf1f4fc91a9f71ce5df1caaa35ee783541677916d53e341584f3a39cfd5
3
+ size 256646
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 121.5986761643288, "std_reward": 59.316103219650024, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-19T15:00:12.073625"}
 
1
+ {"mean_reward": 245.5167385734265, "std_reward": 21.138023030212874, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-31T16:58:42.276386"}