{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f70b53a53f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676225758137371050, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIezL/6BsccUCUhpRSlIwBbJRNKAGMAXSUR0CR45tG/etTdX2UKGgGaAloD0MIbLHbZ5XNM0CUhpRSlGgVS95oFkdAkeQ00iyIHnV9lChoBmgJaA9DCE0R4PQuyXFAlIaUUpRoFU1QAWgWR0CR5e2GIsRQdX2UKGgGaAloD0MIFHtoH+u5ckCUhpRSlGgVTWsBaBZHQJHmyloDgZV1fZQoaAZoCWgPQwhlqmBUkpJxQJSGlFKUaBVNNQFoFkdAkefo4VARkHV9lChoBmgJaA9DCMmOjUA8KnBAlIaUUpRoFU0jAWgWR0CR6El2eQMhdX2UKGgGaAloD0MIgCvZsREKbkCUhpRSlGgVTSsBaBZHQJHpfGPxQSB1fZQoaAZoCWgPQwjl0viFVwBzQJSGlFKUaBVNZgFoFkdAkem0+gUUPHV9lChoBmgJaA9DCObOTDDcQ3BAlIaUUpRoFU2uAWgWR0CR6eoSL61tdX2UKGgGaAloD0MIi/m5oSlzb0CUhpRSlGgVTTYBaBZHQJHqshcJMQF1fZQoaAZoCWgPQwhD/wQXayZwQJSGlFKUaBVNGwFoFkdAkerj7qIJq3V9lChoBmgJaA9DCEXylUAKV3FAlIaUUpRoFU0oAWgWR0CR64J66asqdX2UKGgGaAloD0MIXcXiN4XYXUCUhpRSlGgVTegDaBZHQJHsEyZa3Zx1fZQoaAZoCWgPQwj0pbc/l6JxQJSGlFKUaBVNjQFoFkdAke2mRJVbRnV9lChoBmgJaA9DCA5ORL/2O3BAlIaUUpRoFU1MAWgWR0CR7qOgxrSFdX2UKGgGaAloD0MISMK+nUR5VECUhpRSlGgVTegDaBZHQJHvfqoqCpZ1fZQoaAZoCWgPQwgcQL/vHzVwQJSGlFKUaBVL/GgWR0CR8B9QGfPHdX2UKGgGaAloD0MIXoB9dOpGT0CUhpRSlGgVS9VoFkdAkfJx0+1SfnV9lChoBmgJaA9DCIi85eqHV3FAlIaUUpRoFU0cAWgWR0CR8xRaX8fndX2UKGgGaAloD0MIBDxp4TIfcECUhpRSlGgVTW0BaBZHQJHzJ1HOKO11fZQoaAZoCWgPQwgVxhaCXKdxQJSGlFKUaBVNSwFoFkdAkfNkE5hjOXV9lChoBmgJaA9DCKhXyjIEynBAlIaUUpRoFU0yAWgWR0CR9AJ6IFeOdX2UKGgGaAloD0MIOGVuvpHJb0CUhpRSlGgVTSEBaBZHQJH0PLcKw6h1fZQoaAZoCWgPQwga/P1itkVzQJSGlFKUaBVNSAFoFkdAkfRTFuNxVHV9lChoBmgJaA9DCNv5fmr8JnFAlIaUUpRoFU3kAWgWR0CR9IufVZs9dX2UKGgGaAloD0MIjgWFQdkFckCUhpRSlGgVTbYBaBZHQJH0qlUIcBF1fZQoaAZoCWgPQwicFVET/X9tQJSGlFKUaBVNQAFoFkdAkfZC0jTrmnV9lChoBmgJaA9DCDgsDfwo321AlIaUUpRoFU02AWgWR0CR94V6u4gBdX2UKGgGaAloD0MIcO1ESUjmcUCUhpRSlGgVTZQBaBZHQJH3mA2AG0N1fZQoaAZoCWgPQwjNj7+0KN5xQJSGlFKUaBVNKwFoFkdAkfgaUeMho3V9lChoBmgJaA9DCPUSY5l+NWxAlIaUUpRoFU0ZAWgWR0CR+PTWXkYGdX2UKGgGaAloD0MIkWRW77BBcECUhpRSlGgVTUMBaBZHQJH5tmpVCHB1fZQoaAZoCWgPQwj1EI3uIPRMQJSGlFKUaBVL9mgWR0CR+oDJU5uJdX2UKGgGaAloD0MIz0nvG19HT0CUhpRSlGgVS9RoFkdAkfqSb+cYqHV9lChoBmgJaA9DCGH7yRjfGHBAlIaUUpRoFU0MAWgWR0CR+qM9KVY7dX2UKGgGaAloD0MIRKSmXYxOckCUhpRSlGgVTSQBaBZHQJH73TTfBN51fZQoaAZoCWgPQwgrhxbZTv1wQJSGlFKUaBVL/WgWR0CR/BmCROk+dX2UKGgGaAloD0MIbD1DOGZxQ0CUhpRSlGgVTQABaBZHQJH8TQla8pV1fZQoaAZoCWgPQwgUIuAQKuFsQJSGlFKUaBVNKwFoFkdAkfzvvSc9XHV9lChoBmgJaA9DCA5lqIppfnBAlIaUUpRoFU1TAWgWR0CR/YiLVFx5dX2UKGgGaAloD0MIZvol4u3qckCUhpRSlGgVTUsBaBZHQJH+A3fhuO11fZQoaAZoCWgPQwi0AkNWt3txQJSGlFKUaBVNJQFoFkdAkf8RmbsniXV9lChoBmgJaA9DCFYRbjKqTmVAlIaUUpRoFU3oA2gWR0CSAHan752ydX2UKGgGaAloD0MINEksKbfbckCUhpRSlGgVTTABaBZHQJIY1ri2lVN1fZQoaAZoCWgPQwiEvB5MSj1xQJSGlFKUaBVNBAFoFkdAkhmvcJtzjnV9lChoBmgJaA9DCEOs/gjD63BAlIaUUpRoFU0/AWgWR0CSGfpEx7AtdX2UKGgGaAloD0MI9S7ej5uLcUCUhpRSlGgVTVUBaBZHQJIaGcMEzO51fZQoaAZoCWgPQwgNiuYBrFNwQJSGlFKUaBVNLQFoFkdAkho9Xo1UEXV9lChoBmgJaA9DCKneGtgq9m1AlIaUUpRoFU0qAWgWR0CSG4wsGxD9dX2UKGgGaAloD0MIfnTqyuddcECUhpRSlGgVTTYBaBZHQJIb2vovBad1fZQoaAZoCWgPQwjF506w/61tQJSGlFKUaBVNOAFoFkdAkhwJda+vhnV9lChoBmgJaA9DCFhUxOnkwnJAlIaUUpRoFU0hAWgWR0CSHIHkcS5BdX2UKGgGaAloD0MIwyreyHwTcECUhpRSlGgVTRIBaBZHQJIdE7Rv3rV1fZQoaAZoCWgPQwi3mQrxSApuQJSGlFKUaBVNEgFoFkdAkh26M3qA0HV9lChoBmgJaA9DCPpfrkVLuHBAlIaUUpRoFU1JAWgWR0CSHekGzKLbdX2UKGgGaAloD0MIXqEPljFmcECUhpRSlGgVTVcBaBZHQJIeeO7xusN1fZQoaAZoCWgPQwhn170VyflxQJSGlFKUaBVNQAFoFkdAkh+CAH3UQXV9lChoBmgJaA9DCOyEl+DUEzdAlIaUUpRoFUvYaBZHQJIgJg8bJfZ1fZQoaAZoCWgPQwhJufscH7lyQJSGlFKUaBVNFAFoFkdAkiDe5z5oG3V9lChoBmgJaA9DCPmGwmfrJElAlIaUUpRoFUvraBZHQJIg+KyfL9x1fZQoaAZoCWgPQwgMBWwHI2xDQJSGlFKUaBVL12gWR0CSIhoddVvNdX2UKGgGaAloD0MIyJbl6zL+b0CUhpRSlGgVTR8BaBZHQJIiezUqhDh1fZQoaAZoCWgPQwiXHHdKB2xwQJSGlFKUaBVNMgFoFkdAkiKqr/82rHV9lChoBmgJaA9DCA0Zj1IJb1BAlIaUUpRoFUvRaBZHQJIjP1f3N9p1fZQoaAZoCWgPQwgsLSP1ntlxQJSGlFKUaBVNyAFoFkdAkiTELlV94XV9lChoBmgJaA9DCCeG5GTij25AlIaUUpRoFU03AWgWR0CSJMOtW+49dX2UKGgGaAloD0MIwHebN067ckCUhpRSlGgVTakBaBZHQJIk3EdeY2N1fZQoaAZoCWgPQwgT9Bd6hMxwQJSGlFKUaBVNNgFoFkdAkiUtNi6QNnV9lChoBmgJaA9DCICfceHAcHBAlIaUUpRoFU0tAWgWR0CSJpnSOR1YdX2UKGgGaAloD0MIRIoBEk14b0CUhpRSlGgVTSoBaBZHQJImtJxvNvB1fZQoaAZoCWgPQwjiPJzAdE1zQJSGlFKUaBVNPAFoFkdAkifVBQemvXV9lChoBmgJaA9DCKLUXkRbxG9AlIaUUpRoFU2UAWgWR0CSKHfYzzmPdX2UKGgGaAloD0MIQz19BH5GbUCUhpRSlGgVTR0BaBZHQJIou0UoKD11fZQoaAZoCWgPQwhMGqN11NBwQJSGlFKUaBVNEQFoFkdAkikbhWHUMHV9lChoBmgJaA9DCJCiztxDIm9AlIaUUpRoFU0VAWgWR0CSKVBqsU7CdX2UKGgGaAloD0MIngYMkn44cECUhpRSlGgVTUoBaBZHQJIpW/ub7TF1fZQoaAZoCWgPQwgiUP2DyFxtQJSGlFKUaBVL92gWR0CSKeC6pYLcdX2UKGgGaAloD0MILT9wlafBbUCUhpRSlGgVTQIBaBZHQJIqCMERrad1fZQoaAZoCWgPQwioGyjwzrRwQJSGlFKUaBVNQgFoFkdAkitQaef7JnV9lChoBmgJaA9DCGeZRSg2NXBAlIaUUpRoFU0IAWgWR0CSLCYbbUPQdX2UKGgGaAloD0MIq7NaYI+/ckCUhpRSlGgVTUYBaBZHQJIsbnSv1UV1fZQoaAZoCWgPQwgqqKj61adxQJSGlFKUaBVNGAFoFkdAkiyDe9Ba93V9lChoBmgJaA9DCCSaQBHLZXFAlIaUUpRoFU0oAWgWR0CSLPd1MdtEdX2UKGgGaAloD0MIQup29tVgcECUhpRSlGgVTTUBaBZHQJItvyxzJZJ1fZQoaAZoCWgPQwgG9MKdCxtOQJSGlFKUaBVL0mgWR0CSLvabnX/YdX2UKGgGaAloD0MI51PHKiW0bkCUhpRSlGgVTTEBaBZHQJIvFECvHLl1fZQoaAZoCWgPQwgC9WbUfDtGQJSGlFKUaBVL4GgWR0CSLyqo60Y1dX2UKGgGaAloD0MI5IdKI6ZOcUCUhpRSlGgVTU0BaBZHQJIv9httQ9B1fZQoaAZoCWgPQwhnnlxTIM5vQJSGlFKUaBVNDAFoFkdAkjALpmmLtXV9lChoBmgJaA9DCAcHexPDgG5AlIaUUpRoFU0sAWgWR0CSMCAMDwH8dX2UKGgGaAloD0MIlwFnKdkkbkCUhpRSlGgVTWUBaBZHQJIybMibDuV1fZQoaAZoCWgPQwhQGf8+4zJJQJSGlFKUaBVL3GgWR0CSMumwaBI4dX2UKGgGaAloD0MIbO7ofzlscECUhpRSlGgVTT8BaBZHQJIzGLyc0+F1fZQoaAZoCWgPQwhvRWKCmqVwQJSGlFKUaBVNWAFoFkdAkjPANG3F1nV9lChoBmgJaA9DCGHgufdwf0tAlIaUUpRoFUvZaBZHQJI0WBczImx1fZQoaAZoCWgPQwiGHcakPxByQJSGlFKUaBVNMAFoFkdAkjVZDNQj2XV9lChoBmgJaA9DCJ5EhH8RCXBAlIaUUpRoFU0jAWgWR0CSNVphF3INdX2UKGgGaAloD0MIAd4CCYodb0CUhpRSlGgVTVkBaBZHQJI1qm4y44J1fZQoaAZoCWgPQwgYey++aONSQJSGlFKUaBVLwWgWR0CSNjeKsMiKdX2UKGgGaAloD0MIAP+UKlHRbECUhpRSlGgVTTEBaBZHQJI2SZWq95B1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}