File size: 1,067 Bytes
1e977ff
 
7bc4c32
1e977ff
7bc4c32
 
1e977ff
7bc4c32
1e977ff
 
 
 
7bc4c32
 
 
1e977ff
 
 
 
 
7bc4c32
1e977ff
7bc4c32
1e977ff
7bc4c32
 
 
 
1e977ff
7bc4c32
 
 
1e977ff
 
7bc4c32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
language:
- en
tags:
- yolo
- object-detection
library_name: burial_mounds
license: cc-by-nc-4.0
---

# kardosdrur/burial-mounds-yolov8m-xview

This repository contains a YOLO model that has been finetuned by the `burial_mounds` Python package on the `Mounds` dataset.

> The model is for academic use only, commercial use is prohibited due to restrictions imposed by the training datasets.

## Usage
```python
# pip install burial_mounds

from burial_mounds.model import MoundDetector

model = MoundDetector.load_from_hub("kardosdrur/burial-mounds-yolov8m-xview")

# Find bounding polygons
bounding_polygons = model.detect_mounds("some_satellite_image.png")
for polygon in bounding_polygons:
    print(polygon)

# Annotate satellite images
annotated_image = model.annotate_image("some_satellite_image.png")
annotated_image.show()
```

For a more detailed guide consult the [YOLOv8 documentation](https://docs.ultralytics.com/modes/predict/#key-features-of-predict-mode) or [our documentation](https://github.com/x-tabdeveloping/burial-mounds-object-recognition).