DRL. Unit1. Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- LLv2_test_ppo.zip +3 -0
- LLv2_test_ppo/_stable_baselines3_version +1 -0
- LLv2_test_ppo/data +94 -0
- LLv2_test_ppo/policy.optimizer.pth +3 -0
- LLv2_test_ppo/policy.pth +3 -0
- LLv2_test_ppo/pytorch_variables.pth +3 -0
- LLv2_test_ppo/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
LLv2_test_ppo.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5071f4732ba07af9e0fe3f292fdbbf4ecd06e30d7710a38d530991c7bcb87dd
|
3 |
+
size 144042
|
LLv2_test_ppo/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
LLv2_test_ppo/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa798c7aef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa798c7af80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa798c83050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa798c830e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa798c83170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa798c83200>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa798c83290>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa798c83320>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa798c833b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa798c83440>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa798c834d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa798cd33c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652092534.1523068,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANN2K74heR8+GuU+Pnv3bb7591S93Q9rPQAAAAAAAAAA+vJ7PmlkCD2Tejc7d1ciOmqbmj7On426AACAPwAAgD9agG++6UkzPfj/n7owtyg5t7DPvp0P0LcAAIA/AACAPxYcoz6Ey+4+MyWMPX+qib4LU+E91qQ1PgAAAAAAAAAAAI1zvg+NGj0avg66YxCqOMbFsr7gXNg3AACAPwAAgD+amZc7e6qSuqTCSzxxoCm4PKOFOkI+IbcAAIA/AACAP8Z/Yj70wD8/52glPgCei747Sj49te76OwAAAAAAAAAAmqFmPcPdHrpYTCA7OX3MNg7n5DqYyDe6AACAPwAAgD8Ai9q8QTV8PrMT8T2+bnG+iD0KPlocUL0AAAAAAAAAAO2CYz6UQ5K8b8SZujY10jgEuQK+3ki6OQAAgD8AAIA/puNpPi6Wsryp9SQ7W1mEuQMPJr4qK1O6AACAPwAAgD8zCcs9UgCPuSrVKzzwkh81T0fFOaphITQAAIA/AACAP4qwq75fjeg8LfHhO7KgbDlAmu69LM5KuwAAgD8AAIA/rftaPgpSbDxdppM7Z/yXORgT/j2SNJI6AACAPwAAgD8zoM08UrjfucVlXroE+Pw0/pcDO9/OgzkAAIA/AACAP830MzuPGlO6o1YFPMGnsbZlH3M7SuyitQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInN1aJsNIX0CUhpRSlIwBbJRN6AOMAXSUR0CUE+Y9Pk7wdX2UKGgGaAloD0MI9dpsrMQmU0CUhpRSlGgVTegDaBZHQJQWQDp1RtR1fZQoaAZoCWgPQwhpVyHlJ0RdQJSGlFKUaBVN6ANoFkdAlBhFrVOKwnV9lChoBmgJaA9DCA9EFmniDSpAlIaUUpRoFUu4aBZHQJQbR5WzWwx1fZQoaAZoCWgPQwiDFadaCwZgQJSGlFKUaBVN6ANoFkdAlCoE1yeZonV9lChoBmgJaA9DCORlTSzwvl9AlIaUUpRoFU3oA2gWR0CUK2G7BfrsdX2UKGgGaAloD0MIC9EhcKT3Y0CUhpRSlGgVTegDaBZHQJQvKnCO3lV1fZQoaAZoCWgPQwjeWFAYlFldQJSGlFKUaBVN6ANoFkdAlC+5h4MWoHV9lChoBmgJaA9DCPCGNCpwn1tAlIaUUpRoFU3oA2gWR0CUMRkona37dX2UKGgGaAloD0MIHk/LD1x/X0CUhpRSlGgVTegDaBZHQJQzS+xnnMd1fZQoaAZoCWgPQwhUjV4NUDJTQJSGlFKUaBVN6ANoFkdAlDRhLTQVsXV9lChoBmgJaA9DCETcnEoGhGVAlIaUUpRoFU3oA2gWR0CUXMfVqesgdX2UKGgGaAloD0MIJT0MrU5lUkCUhpRSlGgVS71oFkdAlFzczhxYJXV9lChoBmgJaA9DCKA1P/5SAGFAlIaUUpRoFU3oA2gWR0CUY5mD15B1dX2UKGgGaAloD0MIar5KPnazZkCUhpRSlGgVTcACaBZHQJRmoxagVXV1fZQoaAZoCWgPQwgLuOf50whgQJSGlFKUaBVN6ANoFkdAlGwkCaJAMXV9lChoBmgJaA9DCMpPqn06EGFAlIaUUpRoFU3oA2gWR0CUcZ8ma6SUdX2UKGgGaAloD0MIr3rAPGSXV0CUhpRSlGgVTegDaBZHQJRzr/DLr5Z1fZQoaAZoCWgPQwjB4Jo7+speQJSGlFKUaBVN6ANoFkdAlHpbeuV5bHV9lChoBmgJaA9DCFzmdFnMF2JAlIaUUpRoFU3oA2gWR0CUfxm0mdAgdX2UKGgGaAloD0MIK2nFNxQASkCUhpRSlGgVTegDaBZHQJSCUjRlYlp1fZQoaAZoCWgPQwgD6WLTSpZkQJSGlFKUaBVNBwJoFkdAlIQKS5iEx3V9lChoBmgJaA9DCNFALJs5JNS/lIaUUpRoFUvfaBZHQJSEaHgxagV1fZQoaAZoCWgPQwhYrUz4JQVhQJSGlFKUaBVN6ANoFkdAlJCrZOBUaXV9lChoBmgJaA9DCGX/PA0YcV1AlIaUUpRoFU3oA2gWR0CUkfXoTwlTdX2UKGgGaAloD0MIMJ3WbVDqYkCUhpRSlGgVTegDaBZHQJSVoBzV+Zx1fZQoaAZoCWgPQwhsQIS4ch1gQJSGlFKUaBVN6ANoFkdAlJYqvFFUhnV9lChoBmgJaA9DCKn7AKQ2qmJAlIaUUpRoFU3oA2gWR0CUl4HSWqtHdX2UKGgGaAloD0MIkpOJWwUrYUCUhpRSlGgVTegDaBZHQJSZnWAf+0h1fZQoaAZoCWgPQwhnSBXFq2wBwJSGlFKUaBVL+mgWR0CUo1+cpb2UdX2UKGgGaAloD0MIHPD5YQRaYUCUhpRSlGgVTegDaBZHQJSpU163RXx1fZQoaAZoCWgPQwjBHhMpzdNbQJSGlFKUaBVN6ANoFkdAlMvsibDuSnV9lChoBmgJaA9DCGQ+INCZNVpAlIaUUpRoFU3oA2gWR0CUz2Z9NN8FdX2UKGgGaAloD0MInIcTmE6pYECUhpRSlGgVTegDaBZHQJTVh2C/XXl1fZQoaAZoCWgPQwiyL9l4sPBaQJSGlFKUaBVN6ANoFkdAlNur/XGwR3V9lChoBmgJaA9DCKN5AIv8S2FAlIaUUpRoFU3oA2gWR0CU5ikc0cfedX2UKGgGaAloD0MIFhQGZRpHYUCUhpRSlGgVTegDaBZHQJTr+IGhVVB1fZQoaAZoCWgPQwjGUE60K5xiQJSGlFKUaBVN6ANoFkdAlO+3cxj8UHV9lChoBmgJaA9DCPs/h/nyF2JAlIaUUpRoFU3oA2gWR0CU8acNH6MzdX2UKGgGaAloD0MIRDF5A8yUX0CUhpRSlGgVTegDaBZHQJTyFE2HclB1fZQoaAZoCWgPQwjHSzeJQU5FQJSGlFKUaBVN6ANoFkdAlQBVUEPlMnV9lChoBmgJaA9DCNJWJZF9al1AlIaUUpRoFU3oA2gWR0CVBE35vcagdX2UKGgGaAloD0MIjL0XX7Q+X0CUhpRSlGgVTegDaBZHQJUE5QEZBLR1fZQoaAZoCWgPQwg661OOSWthQJSGlFKUaBVN6ANoFkdAlQZVZkkKNXV9lChoBmgJaA9DCGpMiLmkqEZAlIaUUpRoFU3oA2gWR0CVCH+d9UjtdX2UKGgGaAloD0MIeUDZlCstZECUhpRSlGgVTegDaBZHQJUSYO09hZ11fZQoaAZoCWgPQwjZ6Jyf4p1UQJSGlFKUaBVN6ANoFkdAlRf6zmfXgHV9lChoBmgJaA9DCJBKsaNx8ldAlIaUUpRoFU3oA2gWR0CVOVRRuTA4dX2UKGgGaAloD0MIC+4HPDCSV0CUhpRSlGgVTegDaBZHQJU8nj5sTFl1fZQoaAZoCWgPQwhlGeJYF1FhQJSGlFKUaBVN6ANoFkdAlUKE+kgwGnV9lChoBmgJaA9DCJrN4zCYB05AlIaUUpRoFU3oA2gWR0CVSA5imVJMdX2UKGgGaAloD0MI11BqL6JNWkCUhpRSlGgVTegDaBZHQJVRRDXvphZ1fZQoaAZoCWgPQwinP/uRIsRaQJSGlFKUaBVN6ANoFkdAlVYwFHJ9zHV9lChoBmgJaA9DCMU8K2lFkWFAlIaUUpRoFU3oA2gWR0CVWb/CZWq+dX2UKGgGaAloD0MINC2xMhpNWUCUhpRSlGgVTegDaBZHQJVbjX7Lt/p1fZQoaAZoCWgPQwidLouJTbBiQJSGlFKUaBVN6ANoFkdAlVvwvYe1bHV9lChoBmgJaA9DCAISTaCIIUFAlIaUUpRoFUvbaBZHQJVm2zD4xlB1fZQoaAZoCWgPQwh6qdiY1x1XQJSGlFKUaBVN6ANoFkdAlWi5PqLS/nV9lChoBmgJaA9DCMFz7+GSDlhAlIaUUpRoFU3oA2gWR0CVbC2X9itrdX2UKGgGaAloD0MI2QWDa+4/YECUhpRSlGgVTegDaBZHQJVss8yN4qx1fZQoaAZoCWgPQwgurYbEPZVbQJSGlFKUaBVN6ANoFkdAlW36RdQfp3V9lChoBmgJaA9DCPmFV5K87mBAlIaUUpRoFU3oA2gWR0CVb/U2UB4mdX2UKGgGaAloD0MIzsMJTCeQYUCUhpRSlGgVTegDaBZHQJV5FPi1iON1fZQoaAZoCWgPQwiBr+jW625lQJSGlFKUaBVN6ANoFkdAlX5Z5E+gUXV9lChoBmgJaA9DCJLOwMjLmvg/lIaUUpRoFU0VAWgWR0CVgCEWIoE0dX2UKGgGaAloD0MI2XdF8L/WWECUhpRSlGgVTegDaBZHQJWfg0ygwoN1fZQoaAZoCWgPQwgPC7WmeX5cQJSGlFKUaBVN6ANoFkdAlaJzmKZUk3V9lChoBmgJaA9DCEInhA668l5AlIaUUpRoFU3oA2gWR0CVp63vhIe6dX2UKGgGaAloD0MIh8Woa+1+X0CUhpRSlGgVTegDaBZHQJWtGG+K0lZ1fZQoaAZoCWgPQwj7c9GQ8appQJSGlFKUaBVNVgJoFkdAla6WitaIN3V9lChoBmgJaA9DCDsZHCWv+V1AlIaUUpRoFU3oA2gWR0CVth6pYLb6dX2UKGgGaAloD0MIxxAAHPuZYkCUhpRSlGgVTegDaBZHQJW+sUJv5xl1fZQoaAZoCWgPQwjSGK2jqspWQJSGlFKUaBVN6ANoFkdAlcCUhNdqtnV9lChoBmgJaA9DCGx7uyU51F5AlIaUUpRoFU3oA2gWR0CVwQh0Qsf8dX2UKGgGaAloD0MIWtQnuUNHZECUhpRSlGgVTegDaBZHQJXMgiwB5op1fZQoaAZoCWgPQwiH3XcMjz1bQJSGlFKUaBVN6ANoFkdAldJn4Kx9onV9lChoBmgJaA9DCGhYjLrWKVtAlIaUUpRoFU3oA2gWR0CV1IVe8f3fdX2UKGgGaAloD0MIZY9QMySZa0CUhpRSlGgVTeEBaBZHQJXVJ7Y02tN1fZQoaAZoCWgPQwi5qYHmc4ZdQJSGlFKUaBVN6ANoFkdAldbeJLuhK3V9lChoBmgJaA9DCPVMLzEWtGFAlIaUUpRoFU3oA2gWR0CV4W4lhPTHdX2UKGgGaAloD0MInYGRlzWwWECUhpRSlGgVTegDaBZHQJXnWaJAMUh1fZQoaAZoCWgPQwgtexLYnLhfQJSGlFKUaBVN6ANoFkdAlek5xFRYR3V9lChoBmgJaA9DCAfTMHxEA2FAlIaUUpRoFU3oA2gWR0CV7hRXwLE2dX2UKGgGaAloD0MILnHkgcilVECUhpRSlGgVTegDaBZHQJYMBR51Ng11fZQoaAZoCWgPQwhAMEePX0tiQJSGlFKUaBVN6ANoFkdAlhGVpoK2KHV9lChoBmgJaA9DCK6AQj19jGJAlIaUUpRoFU3oA2gWR0CWFzGUOd5IdX2UKGgGaAloD0MI4iAhyhcUQ0CUhpRSlGgVS91oFkdAlhn6Dwpe/3V9lChoBmgJaA9DCF2G/3QDEV5AlIaUUpRoFU3oA2gWR0CWIKrNnoPkdX2UKGgGaAloD0MIcxB0tKr/YECUhpRSlGgVTegDaBZHQJYpChqTKT11fZQoaAZoCWgPQwhK628JQLZhQJSGlFKUaBVN6ANoFkdAlirRDLKV6nV9lChoBmgJaA9DCEpdMo4RkmJAlIaUUpRoFU3oA2gWR0CWKzL1mJ3xdX2UKGgGaAloD0MI0jjU70LQYkCUhpRSlGgVTegDaBZHQJY2kF9roGJ1fZQoaAZoCWgPQwgGuYswxexjQJSGlFKUaBVN6ANoFkdAljxHnIQvpXV9lChoBmgJaA9DCOW2fY/6O19AlIaUUpRoFU3oA2gWR0CWPm127nPndX2UKGgGaAloD0MIGxGMg8vJYECUhpRSlGgVTegDaBZHQJY/A1UEPlN1fZQoaAZoCWgPQwhM32sIjj5gQJSGlFKUaBVN6ANoFkdAlkCdbX6InHV9lChoBmgJaA9DCGN6whIPNDNAlIaUUpRoFUv5aBZHQJZJk0xdpqR1fZQoaAZoCWgPQwiiRiHJLHpiQJSGlFKUaBVN6ANoFkdAlkocLv1DjXV9lChoBmgJaA9DCMA+OnXlKl9AlIaUUpRoFU3oA2gWR0CWTz5kbxVidX2UKGgGaAloD0MIychZ2NM+XkCUhpRSlGgVTegDaBZHQJZQ+UOd5IJ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LLv2_test_ppo/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:919136c62ed9dbac7be76e1fa144fdd480da975db047826ec09ab37b10af0306
|
3 |
+
size 84829
|
LLv2_test_ppo/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b10e91e1c7925284cbde6ada82d0c5e752d8fe7c5d91aeb928525698a7826d4
|
3 |
+
size 43201
|
LLv2_test_ppo/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LLv2_test_ppo/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 211.84 +/- 25.60
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa798c7aef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa798c7af80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa798c83050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa798c830e0>", "_build": "<function ActorCriticPolicy._build at 0x7fa798c83170>", "forward": "<function ActorCriticPolicy.forward at 0x7fa798c83200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa798c83290>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa798c83320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa798c833b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa798c83440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa798c834d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa798cd33c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652092534.1523068, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANN2K74heR8+GuU+Pnv3bb7591S93Q9rPQAAAAAAAAAA+vJ7PmlkCD2Tejc7d1ciOmqbmj7On426AACAPwAAgD9agG++6UkzPfj/n7owtyg5t7DPvp0P0LcAAIA/AACAPxYcoz6Ey+4+MyWMPX+qib4LU+E91qQ1PgAAAAAAAAAAAI1zvg+NGj0avg66YxCqOMbFsr7gXNg3AACAPwAAgD+amZc7e6qSuqTCSzxxoCm4PKOFOkI+IbcAAIA/AACAP8Z/Yj70wD8/52glPgCei747Sj49te76OwAAAAAAAAAAmqFmPcPdHrpYTCA7OX3MNg7n5DqYyDe6AACAPwAAgD8Ai9q8QTV8PrMT8T2+bnG+iD0KPlocUL0AAAAAAAAAAO2CYz6UQ5K8b8SZujY10jgEuQK+3ki6OQAAgD8AAIA/puNpPi6Wsryp9SQ7W1mEuQMPJr4qK1O6AACAPwAAgD8zCcs9UgCPuSrVKzzwkh81T0fFOaphITQAAIA/AACAP4qwq75fjeg8LfHhO7KgbDlAmu69LM5KuwAAgD8AAIA/rftaPgpSbDxdppM7Z/yXORgT/j2SNJI6AACAPwAAgD8zoM08UrjfucVlXroE+Pw0/pcDO9/OgzkAAIA/AACAP830MzuPGlO6o1YFPMGnsbZlH3M7SuyitQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInN1aJsNIX0CUhpRSlIwBbJRN6AOMAXSUR0CUE+Y9Pk7wdX2UKGgGaAloD0MI9dpsrMQmU0CUhpRSlGgVTegDaBZHQJQWQDp1RtR1fZQoaAZoCWgPQwhpVyHlJ0RdQJSGlFKUaBVN6ANoFkdAlBhFrVOKwnV9lChoBmgJaA9DCA9EFmniDSpAlIaUUpRoFUu4aBZHQJQbR5WzWwx1fZQoaAZoCWgPQwiDFadaCwZgQJSGlFKUaBVN6ANoFkdAlCoE1yeZonV9lChoBmgJaA9DCORlTSzwvl9AlIaUUpRoFU3oA2gWR0CUK2G7BfrsdX2UKGgGaAloD0MIC9EhcKT3Y0CUhpRSlGgVTegDaBZHQJQvKnCO3lV1fZQoaAZoCWgPQwjeWFAYlFldQJSGlFKUaBVN6ANoFkdAlC+5h4MWoHV9lChoBmgJaA9DCPCGNCpwn1tAlIaUUpRoFU3oA2gWR0CUMRkona37dX2UKGgGaAloD0MIHk/LD1x/X0CUhpRSlGgVTegDaBZHQJQzS+xnnMd1fZQoaAZoCWgPQwhUjV4NUDJTQJSGlFKUaBVN6ANoFkdAlDRhLTQVsXV9lChoBmgJaA9DCETcnEoGhGVAlIaUUpRoFU3oA2gWR0CUXMfVqesgdX2UKGgGaAloD0MIJT0MrU5lUkCUhpRSlGgVS71oFkdAlFzczhxYJXV9lChoBmgJaA9DCKA1P/5SAGFAlIaUUpRoFU3oA2gWR0CUY5mD15B1dX2UKGgGaAloD0MIar5KPnazZkCUhpRSlGgVTcACaBZHQJRmoxagVXV1fZQoaAZoCWgPQwgLuOf50whgQJSGlFKUaBVN6ANoFkdAlGwkCaJAMXV9lChoBmgJaA9DCMpPqn06EGFAlIaUUpRoFU3oA2gWR0CUcZ8ma6SUdX2UKGgGaAloD0MIr3rAPGSXV0CUhpRSlGgVTegDaBZHQJRzr/DLr5Z1fZQoaAZoCWgPQwjB4Jo7+speQJSGlFKUaBVN6ANoFkdAlHpbeuV5bHV9lChoBmgJaA9DCFzmdFnMF2JAlIaUUpRoFU3oA2gWR0CUfxm0mdAgdX2UKGgGaAloD0MIK2nFNxQASkCUhpRSlGgVTegDaBZHQJSCUjRlYlp1fZQoaAZoCWgPQwgD6WLTSpZkQJSGlFKUaBVNBwJoFkdAlIQKS5iEx3V9lChoBmgJaA9DCNFALJs5JNS/lIaUUpRoFUvfaBZHQJSEaHgxagV1fZQoaAZoCWgPQwhYrUz4JQVhQJSGlFKUaBVN6ANoFkdAlJCrZOBUaXV9lChoBmgJaA9DCGX/PA0YcV1AlIaUUpRoFU3oA2gWR0CUkfXoTwlTdX2UKGgGaAloD0MIMJ3WbVDqYkCUhpRSlGgVTegDaBZHQJSVoBzV+Zx1fZQoaAZoCWgPQwhsQIS4ch1gQJSGlFKUaBVN6ANoFkdAlJYqvFFUhnV9lChoBmgJaA9DCKn7AKQ2qmJAlIaUUpRoFU3oA2gWR0CUl4HSWqtHdX2UKGgGaAloD0MIkpOJWwUrYUCUhpRSlGgVTegDaBZHQJSZnWAf+0h1fZQoaAZoCWgPQwhnSBXFq2wBwJSGlFKUaBVL+mgWR0CUo1+cpb2UdX2UKGgGaAloD0MIHPD5YQRaYUCUhpRSlGgVTegDaBZHQJSpU163RXx1fZQoaAZoCWgPQwjBHhMpzdNbQJSGlFKUaBVN6ANoFkdAlMvsibDuSnV9lChoBmgJaA9DCGQ+INCZNVpAlIaUUpRoFU3oA2gWR0CUz2Z9NN8FdX2UKGgGaAloD0MInIcTmE6pYECUhpRSlGgVTegDaBZHQJTVh2C/XXl1fZQoaAZoCWgPQwiyL9l4sPBaQJSGlFKUaBVN6ANoFkdAlNur/XGwR3V9lChoBmgJaA9DCKN5AIv8S2FAlIaUUpRoFU3oA2gWR0CU5ikc0cfedX2UKGgGaAloD0MIFhQGZRpHYUCUhpRSlGgVTegDaBZHQJTr+IGhVVB1fZQoaAZoCWgPQwjGUE60K5xiQJSGlFKUaBVN6ANoFkdAlO+3cxj8UHV9lChoBmgJaA9DCPs/h/nyF2JAlIaUUpRoFU3oA2gWR0CU8acNH6MzdX2UKGgGaAloD0MIRDF5A8yUX0CUhpRSlGgVTegDaBZHQJTyFE2HclB1fZQoaAZoCWgPQwjHSzeJQU5FQJSGlFKUaBVN6ANoFkdAlQBVUEPlMnV9lChoBmgJaA9DCNJWJZF9al1AlIaUUpRoFU3oA2gWR0CVBE35vcagdX2UKGgGaAloD0MIjL0XX7Q+X0CUhpRSlGgVTegDaBZHQJUE5QEZBLR1fZQoaAZoCWgPQwg661OOSWthQJSGlFKUaBVN6ANoFkdAlQZVZkkKNXV9lChoBmgJaA9DCGpMiLmkqEZAlIaUUpRoFU3oA2gWR0CVCH+d9UjtdX2UKGgGaAloD0MIeUDZlCstZECUhpRSlGgVTegDaBZHQJUSYO09hZ11fZQoaAZoCWgPQwjZ6Jyf4p1UQJSGlFKUaBVN6ANoFkdAlRf6zmfXgHV9lChoBmgJaA9DCJBKsaNx8ldAlIaUUpRoFU3oA2gWR0CVOVRRuTA4dX2UKGgGaAloD0MIC+4HPDCSV0CUhpRSlGgVTegDaBZHQJU8nj5sTFl1fZQoaAZoCWgPQwhlGeJYF1FhQJSGlFKUaBVN6ANoFkdAlUKE+kgwGnV9lChoBmgJaA9DCJrN4zCYB05AlIaUUpRoFU3oA2gWR0CVSA5imVJMdX2UKGgGaAloD0MI11BqL6JNWkCUhpRSlGgVTegDaBZHQJVRRDXvphZ1fZQoaAZoCWgPQwinP/uRIsRaQJSGlFKUaBVN6ANoFkdAlVYwFHJ9zHV9lChoBmgJaA9DCMU8K2lFkWFAlIaUUpRoFU3oA2gWR0CVWb/CZWq+dX2UKGgGaAloD0MINC2xMhpNWUCUhpRSlGgVTegDaBZHQJVbjX7Lt/p1fZQoaAZoCWgPQwidLouJTbBiQJSGlFKUaBVN6ANoFkdAlVvwvYe1bHV9lChoBmgJaA9DCAISTaCIIUFAlIaUUpRoFUvbaBZHQJVm2zD4xlB1fZQoaAZoCWgPQwh6qdiY1x1XQJSGlFKUaBVN6ANoFkdAlWi5PqLS/nV9lChoBmgJaA9DCMFz7+GSDlhAlIaUUpRoFU3oA2gWR0CVbC2X9itrdX2UKGgGaAloD0MI2QWDa+4/YECUhpRSlGgVTegDaBZHQJVss8yN4qx1fZQoaAZoCWgPQwgurYbEPZVbQJSGlFKUaBVN6ANoFkdAlW36RdQfp3V9lChoBmgJaA9DCPmFV5K87mBAlIaUUpRoFU3oA2gWR0CVb/U2UB4mdX2UKGgGaAloD0MIzsMJTCeQYUCUhpRSlGgVTegDaBZHQJV5FPi1iON1fZQoaAZoCWgPQwiBr+jW625lQJSGlFKUaBVN6ANoFkdAlX5Z5E+gUXV9lChoBmgJaA9DCJLOwMjLmvg/lIaUUpRoFU0VAWgWR0CVgCEWIoE0dX2UKGgGaAloD0MI2XdF8L/WWECUhpRSlGgVTegDaBZHQJWfg0ygwoN1fZQoaAZoCWgPQwgPC7WmeX5cQJSGlFKUaBVN6ANoFkdAlaJzmKZUk3V9lChoBmgJaA9DCEInhA668l5AlIaUUpRoFU3oA2gWR0CVp63vhIe6dX2UKGgGaAloD0MIh8Woa+1+X0CUhpRSlGgVTegDaBZHQJWtGG+K0lZ1fZQoaAZoCWgPQwj7c9GQ8appQJSGlFKUaBVNVgJoFkdAla6WitaIN3V9lChoBmgJaA9DCDsZHCWv+V1AlIaUUpRoFU3oA2gWR0CVth6pYLb6dX2UKGgGaAloD0MIxxAAHPuZYkCUhpRSlGgVTegDaBZHQJW+sUJv5xl1fZQoaAZoCWgPQwjSGK2jqspWQJSGlFKUaBVN6ANoFkdAlcCUhNdqtnV9lChoBmgJaA9DCGx7uyU51F5AlIaUUpRoFU3oA2gWR0CVwQh0Qsf8dX2UKGgGaAloD0MIWtQnuUNHZECUhpRSlGgVTegDaBZHQJXMgiwB5op1fZQoaAZoCWgPQwiH3XcMjz1bQJSGlFKUaBVN6ANoFkdAldJn4Kx9onV9lChoBmgJaA9DCGhYjLrWKVtAlIaUUpRoFU3oA2gWR0CV1IVe8f3fdX2UKGgGaAloD0MIZY9QMySZa0CUhpRSlGgVTeEBaBZHQJXVJ7Y02tN1fZQoaAZoCWgPQwi5qYHmc4ZdQJSGlFKUaBVN6ANoFkdAldbeJLuhK3V9lChoBmgJaA9DCPVMLzEWtGFAlIaUUpRoFU3oA2gWR0CV4W4lhPTHdX2UKGgGaAloD0MInYGRlzWwWECUhpRSlGgVTegDaBZHQJXnWaJAMUh1fZQoaAZoCWgPQwgtexLYnLhfQJSGlFKUaBVN6ANoFkdAlek5xFRYR3V9lChoBmgJaA9DCAfTMHxEA2FAlIaUUpRoFU3oA2gWR0CV7hRXwLE2dX2UKGgGaAloD0MILnHkgcilVECUhpRSlGgVTegDaBZHQJYMBR51Ng11fZQoaAZoCWgPQwhAMEePX0tiQJSGlFKUaBVN6ANoFkdAlhGVpoK2KHV9lChoBmgJaA9DCK6AQj19jGJAlIaUUpRoFU3oA2gWR0CWFzGUOd5IdX2UKGgGaAloD0MI4iAhyhcUQ0CUhpRSlGgVS91oFkdAlhn6Dwpe/3V9lChoBmgJaA9DCF2G/3QDEV5AlIaUUpRoFU3oA2gWR0CWIKrNnoPkdX2UKGgGaAloD0MIcxB0tKr/YECUhpRSlGgVTegDaBZHQJYpChqTKT11fZQoaAZoCWgPQwhK628JQLZhQJSGlFKUaBVN6ANoFkdAlirRDLKV6nV9lChoBmgJaA9DCEpdMo4RkmJAlIaUUpRoFU3oA2gWR0CWKzL1mJ3xdX2UKGgGaAloD0MI0jjU70LQYkCUhpRSlGgVTegDaBZHQJY2kF9roGJ1fZQoaAZoCWgPQwgGuYswxexjQJSGlFKUaBVN6ANoFkdAljxHnIQvpXV9lChoBmgJaA9DCOW2fY/6O19AlIaUUpRoFU3oA2gWR0CWPm127nPndX2UKGgGaAloD0MIGxGMg8vJYECUhpRSlGgVTegDaBZHQJY/A1UEPlN1fZQoaAZoCWgPQwhM32sIjj5gQJSGlFKUaBVN6ANoFkdAlkCdbX6InHV9lChoBmgJaA9DCGN6whIPNDNAlIaUUpRoFUv5aBZHQJZJk0xdpqR1fZQoaAZoCWgPQwiiRiHJLHpiQJSGlFKUaBVN6ANoFkdAlkocLv1DjXV9lChoBmgJaA9DCMA+OnXlKl9AlIaUUpRoFU3oA2gWR0CWTz5kbxVidX2UKGgGaAloD0MIychZ2NM+XkCUhpRSlGgVTegDaBZHQJZQ+UOd5IJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c39c85da3b7968baccf6923bc1765d412937e3ed9309b2e7558c820bfdcd4cb8
|
3 |
+
size 244387
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 211.84316932595775, "std_reward": 25.595568674644745, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T11:06:55.178480"}
|