[paths] train = null dev = null vectors = null init_tok2vec = null [system] gpu_allocator = null seed = 0 [nlp] lang = "en" pipeline = ["tok2vec","transformer","ner","textcat"] batch_size = 128 disabled = [] before_creation = null after_creation = null after_pipeline_creation = null tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} [components] [components.ner] factory = "ner" incorrect_spans_key = null moves = null scorer = {"@scorers":"spacy.ner_scorer.v1"} update_with_oracle_cut_size = 100 [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "ner" extra_state_tokens = false hidden_width = 64 maxout_pieces = 2 use_upper = false nO = null [components.ner.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 pooling = {"@layers":"reduce_mean.v1"} upstream = "*" [components.textcat] factory = "textcat" scorer = {"@scorers":"spacy.textcat_scorer.v1"} threshold = 0.5 [components.textcat.model] @architectures = "spacy.TextCatEnsemble.v2" nO = null [components.textcat.model.linear_model] @architectures = "spacy.TextCatBOW.v2" exclusive_classes = true ngram_size = 1 no_output_layer = false nO = null [components.textcat.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 pooling = {"@layers":"reduce_mean.v1"} upstream = "*" [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v2" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v2" width = ${components.tok2vec.model.encode.width} attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] rows = [5000,2500,2500,2500] include_static_vectors = false [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 96 depth = 4 window_size = 1 maxout_pieces = 3 [components.transformer] factory = "transformer" max_batch_items = 4096 set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} [components.transformer.model] @architectures = "spacy-transformers.TransformerModel.v3" name = "roberta-base" mixed_precision = false [components.transformer.model.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 128 stride = 96 [components.transformer.model.grad_scaler_config] [components.transformer.model.tokenizer_config] use_fast = true [components.transformer.model.transformer_config] [corpora] @readers = "prodigy.MergedCorpus.v1" eval_split = 0.2 sample_size = 1.0 textcat_multilabel = null parser = null tagger = null senter = null spancat = null [corpora.ner] @readers = "prodigy.NERCorpus.v1" datasets = ["real_world_meds"] eval_datasets = [] default_fill = "outside" incorrect_key = "incorrect_spans" [corpora.textcat] @readers = "prodigy.TextCatCorpus.v1" datasets = ["db-labeled"] eval_datasets = [] exclusive = true [training] accumulate_gradient = 3 dev_corpus = "corpora.dev" train_corpus = "corpora.train" seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 patience = 1600 max_epochs = 0 max_steps = 20000 eval_frequency = 200 frozen_components = [] annotating_components = [] before_to_disk = null [training.batcher] @batchers = "spacy.batch_by_padded.v1" discard_oversize = true size = 2000 buffer = 256 get_length = null [training.logger] @loggers = "prodigy.ConsoleLogger.v1" progress_bar = false [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 [training.optimizer.learn_rate] @schedules = "warmup_linear.v1" warmup_steps = 250 total_steps = 20000 initial_rate = 0.00005 [training.score_weights] ents_f = 0.5 ents_p = 0.0 ents_r = 0.0 ents_per_type = null cats_score = 0.5 cats_score_desc = null cats_micro_p = null cats_micro_r = null cats_micro_f = null cats_macro_p = null cats_macro_r = null cats_macro_f = null cats_macro_auc = null cats_f_per_type = null cats_macro_auc_per_type = null [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.tokenizer]