Transformers
Safetensors
Japanese
Inference Endpoints
karsh-uk commited on
Commit
2d9199e
·
verified ·
1 Parent(s): 6ee3092

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -4
README.md CHANGED
@@ -1,8 +1,113 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
@@ -17,12 +122,12 @@ tags: []
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
  - **Funded by [optional]:** [More Information Needed]
22
  - **Shared by [optional]:** [More Information Needed]
23
  - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
  - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
 
1
  ---
2
  library_name: transformers
3
+ license: cc-by-2.0
4
+ datasets:
5
+ - llm-jp/databricks-dolly-15k-ja
6
+ - kinokokoro/ichikara-instruction-003
7
+ language:
8
+ - ja
9
+ base_model:
10
+ - llm-jp/llm-jp-3-13b-instruct
11
  ---
12
 
13
+ # sample use
14
+ """
15
+ !pip install -U bitsandbytes
16
+ !pip install -U transformers
17
+ !pip install -U accelerate
18
+ !pip install -U datasets
19
+ !pip install -U peft
20
+
21
+ #### notebookでインタラクティブな表示を可能とする(ただし、うまく動かない場合あり)
22
+ !pip install ipywidgets --upgrade
23
+
24
+ from transformers import (
25
+ AutoModelForCausalLM,
26
+ AutoTokenizer,
27
+ BitsAndBytesConfig,
28
+ )
29
+ from peft import PeftModel
30
+ import torch
31
+ from tqdm import tqdm
32
+ import json
33
+
34
+ #### Hugging Faceで取得したTokenをこちらに貼る。
35
+ HF_TOKEN = "Your Hugging Face Token"
36
+
37
+ #### ベースとなるモデルと学習したLoRAのアダプタ。
38
+ # model_idの値はomnicampusの環境におけるモデルのパスを表しており、それ以外の環境で実行する場合は変更の必要があります。
39
+ model_id = "models/models--llm-jp--llm-jp-3-13b/snapshots/cd3823f4c1fcbb0ad2e2af46036ab1b0ca13192a"
40
+
41
+ adapter_id = "https://huggingface.co/karsh-uk/llm-jp-3-13b-finetune05" # こちらにアップロードしたHugging FaceのIDを指定してください。
42
+
43
+ #### QLoRA config
44
+ bnb_config = BitsAndBytesConfig(
45
+ load_in_4bit=True,
46
+ bnb_4bit_quant_type="nf4",
47
+ bnb_4bit_compute_dtype=torch.bfloat16,
48
+ )
49
+
50
+ #### Load model
51
+ model = AutoModelForCausalLM.from_pretrained(
52
+ model_id,
53
+ quantization_config=bnb_config,
54
+ device_map="auto",
55
+ token = HF_TOKEN
56
+ )
57
+
58
+ #### Load tokenizer
59
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
60
+
61
+ #### 元のモデルにLoRAのアダプタを統合。
62
+ model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
63
+
64
+ #### データセットの読み込み。
65
+ datasets = []
66
+ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
67
+ item = ""
68
+ for line in f:
69
+ line = line.strip()
70
+ item += line
71
+ if item.endswith("}"):
72
+ datasets.append(json.loads(item))
73
+ item = ""
74
+
75
+ #### llmjp
76
+ results = []
77
+ for data in tqdm(datasets):
78
+
79
+ input = data["input"]
80
+
81
+ prompt = f"""### 指示
82
+ {input}
83
+ ### 回答
84
+ """
85
+
86
+ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
87
+ attention_mask = torch.ones_like(tokenized_input)
88
+ with torch.no_grad():
89
+ outputs = model.generate(
90
+ tokenized_input,
91
+ attention_mask=attention_mask,
92
+ max_new_tokens=100,
93
+ do_sample=False,
94
+ repetition_penalty=1.2,
95
+ pad_token_id=tokenizer.eos_token_id
96
+ )[0]
97
+ output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
98
+
99
+ results.append({"task_id": data["task_id"], "input": input, "output": output})
100
+
101
+ import re
102
+ jsonl_id = re.sub(".*/", "", adapter_id)
103
+ with open(f"./{jsonl_id}-outputs05.jsonl", 'w', encoding='utf-8') as f:
104
+ for result in results:
105
+ json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
106
+ f.write('\n')
107
+
108
+ """
109
+
110
+
111
  # Model Card for Model ID
112
 
113
  <!-- Provide a quick summary of what the model is/does. -->
 
122
 
123
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
124
 
125
+ - **Developed by:** [Y.Takahashi]
126
  - **Funded by [optional]:** [More Information Needed]
127
  - **Shared by [optional]:** [More Information Needed]
128
  - **Model type:** [More Information Needed]
129
+ - **Language(s) (NLP):** [Japanese]
130
+ - **License:** [Creative Commons Attribution Share Alike 3.0]
131
  - **Finetuned from model [optional]:** [More Information Needed]
132
 
133
  ### Model Sources [optional]