updated app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
|
4 |
+
# Load models
|
5 |
+
models = {
|
6 |
+
"Logistic Regression": joblib.load("models/best_model.joblib"),
|
7 |
+
"Random Forest": joblib.load("models/random_forest_model.joblib"),
|
8 |
+
"SVM (Linear)": joblib.load("models/svm_model_linear.joblib"),
|
9 |
+
"SVM (Polynomial)": joblib.load("models/svm_model_polynomial.joblib"),
|
10 |
+
"SVM (RBF)": joblib.load("models/svm_model_rbf.joblib"),
|
11 |
+
"KNN": joblib.load("models/trained_knn_model.joblib"),
|
12 |
+
}
|
13 |
+
|
14 |
+
# Define prediction function
|
15 |
+
def predict(review, model_name):
|
16 |
+
model = models[model_name]
|
17 |
+
prediction = model.predict([review])[0]
|
18 |
+
probabilities = model.predict_proba([review])[0]
|
19 |
+
return {
|
20 |
+
"Predicted Class": str(prediction),
|
21 |
+
"Class Probabilities": {
|
22 |
+
"Class 0": probabilities[0],
|
23 |
+
"Class 1": probabilities[1],
|
24 |
+
},
|
25 |
+
}
|
26 |
+
|
27 |
+
# Create Gradio interface
|
28 |
+
interface = gr.Interface(
|
29 |
+
fn=predict,
|
30 |
+
inputs=[
|
31 |
+
gr.Textbox(label="Review Comment"),
|
32 |
+
gr.Dropdown(choices=list(models.keys()), label="Model"),
|
33 |
+
],
|
34 |
+
outputs=gr.JSON(label="Prediction Results"),
|
35 |
+
title="Text Classification Models",
|
36 |
+
description="Choose a model and provide a review to see the predicted sentiment class.",
|
37 |
+
)
|
38 |
+
|
39 |
+
# Launch the Gradio app
|
40 |
+
if __name__ == "__main__":
|
41 |
+
interface.launch()
|