kartiknarayan
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,68 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
---
|
6 |
+
|
7 |
+
# PETAL<i>face</i> Model Card
|
8 |
+
|
9 |
+
<div align="center">
|
10 |
+
|
11 |
+
[**Project Page**](https://kartik-3004.github.io/SegFace/) **|** [**Paper (ArXiv)**](https://kartik-3004.github.io/SegFace/) **|** [**Code**](https://github.com/Kartik-3004/SegFace)
|
12 |
+
|
13 |
+
|
14 |
+
</div>
|
15 |
+
|
16 |
+
## Introduction
|
17 |
+
|
18 |
+
<div align="center">
|
19 |
+
<img src='assets/visual_abstract.png' height="50%" width="50%">
|
20 |
+
</div>
|
21 |
+
|
22 |
+
The key contributions of our work are,
|
23 |
+
1. We introduce a lightweight transformer decoder with learnable class-specific tokens, that ensures each token is dedicated to a specific class, thereby enabling independent modeling of classes. The design effectively addresses the challenge of poor segmentation performance of long-tail classes, prevalent in existing methods.
|
24 |
+
2. Our multi-scale feature extraction and MLP fusion strategy, combined with a transformer decoder that leverages learnable class-specific tokens, mitigates the dominance of head classes during training and enhances the feature representation of long-tail classes.
|
25 |
+
3. <i>SegFace</i> establishes a new state-of-the-art performance on the LaPa dataset (93.03 mean F1 score) and the CelebAMask-HQ dataset (88.96 mean F1 score). Moreover, our model can be adapted for fast inference by simply swapping the backbone with a MobileNetV3 backbone. The mobile version achieves a mean F1 score of 87.91 on the CelebAMask-HQ dataset with 95.96 FPS.
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
## Training Framework
|
30 |
+
<div align="center">
|
31 |
+
<img src='assets/segface'>
|
32 |
+
</div>
|
33 |
+
|
34 |
+
The proposed architecture, <i>SegFace</i>, addresses face segmentation by enhancing the performance on long-tail classes through a transformer-based approach. Specifically, multi-scale features are first extracted from an image encoder and then fused using an MLP fusion module to form face tokens. These tokens, along with class-specific tokens, undergo self-attention, face-to-token, and token-to-face cross-attention operations, refining both class and face tokens to enhance class-specific features. Finally, the upscaled face tokens and learned class tokens are combined to produce segmentation maps for each facial region.
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Usage
|
39 |
+
|
40 |
+
The trained weights can be downloaded directly from this repository or using python:
|
41 |
+
```python
|
42 |
+
from huggingface_hub import hf_hub_download
|
43 |
+
|
44 |
+
# Finetuned Weights
|
45 |
+
|
46 |
+
# The filename "convnext_celeba_512" indicates that the model has a convnext bakcbone and trained
|
47 |
+
# on celeba dataset at 512 resolution.
|
48 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="convnext_celeba_512/model_299.pt", local_dir="./weights")
|
49 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="efficientnet_celeba_512/model_299.pt", local_dir="./weights")
|
50 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="mobilenet_celeba_512/model_299.pt", local_dir="./weights")
|
51 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="resnet_celeba_512/model_299.pt", local_dir="./weights")
|
52 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="swinb_celeba_224/model_299.pt", local_dir="./weights")
|
53 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="swinb_celeba_256/model_299.pt", local_dir="./weights")
|
54 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="swinb_celeba_448/model_299.pt", local_dir="./weights")
|
55 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="swinb_celeba_512/model_299.pt", local_dir="./weights")
|
56 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="swinb_lapa_224/model_299.pt", local_dir="./weights")
|
57 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="swinb_lapa_256/model_299.pt", local_dir="./weights")
|
58 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="swinb_lapa_448/model_299.pt", local_dir="./weights")
|
59 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="swinb_lapa_512/model_299.pt", local_dir="./weights")
|
60 |
+
hf_hub_download(repo_id="kartiknarayan/segface", filename="swinv2b_celeba_512/model_299.pt", local_dir="./weights")
|
61 |
+
```
|
62 |
+
|
63 |
+
## Citation
|
64 |
+
```bibtex
|
65 |
+
Coming Soon !
|
66 |
+
```
|
67 |
+
|
68 |
+
Please check our [GitHub repository](https://kartik-3004.github.io/SegFace/) for complete instructions.
|