--- license: mit language: - en --- # SegFace Model Card
[**Project Page**](https://kartik-3004.github.io/SegFace/) **|** [**Paper (ArXiv)**](https://arxiv.org/abs/2412.08647) **|** [**Code**](https://github.com/Kartik-3004/SegFace)
## Introduction The key contributions of our work are, 1. We introduce a lightweight transformer decoder with learnable class-specific tokens, that ensures each token is dedicated to a specific class, thereby enabling independent modeling of classes. The design effectively addresses the challenge of poor segmentation performance of long-tail classes, prevalent in existing methods. 2. Our multi-scale feature extraction and MLP fusion strategy, combined with a transformer decoder that leverages learnable class-specific tokens, mitigates the dominance of head classes during training and enhances the feature representation of long-tail classes. 3. SegFace establishes a new state-of-the-art performance on the LaPa dataset (93.03 mean F1 score) and the CelebAMask-HQ dataset (88.96 mean F1 score). Moreover, our model can be adapted for fast inference by simply swapping the backbone with a MobileNetV3 backbone. The mobile version achieves a mean F1 score of 87.91 on the CelebAMask-HQ dataset with 95.96 FPS. ## Training Framework
The proposed architecture, SegFace, addresses face segmentation by enhancing the performance on long-tail classes through a transformer-based approach. Specifically, multi-scale features are first extracted from an image encoder and then fused using an MLP fusion module to form face tokens. These tokens, along with class-specific tokens, undergo self-attention, face-to-token, and token-to-face cross-attention operations, refining both class and face tokens to enhance class-specific features. Finally, the upscaled face tokens and learned class tokens are combined to produce segmentation maps for each facial region. ## Usage The trained weights can be downloaded directly from this repository or using python: ```python from huggingface_hub import hf_hub_download # The filename "convnext_celeba_512" indicates that the model has a convnext bakcbone and trained # on celeba dataset at 512 resolution. hf_hub_download(repo_id="kartiknarayan/SegFace", filename="convnext_celeba_512/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="efficientnet_celeba_512/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="mobilenet_celeba_512/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="resnet_celeba_512/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="swinb_celeba_224/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="swinb_celeba_256/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="swinb_celeba_448/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="swinb_celeba_512/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="swinb_lapa_224/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="swinb_lapa_256/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="swinb_lapa_448/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="swinb_lapa_512/model_299.pt", local_dir="./weights") hf_hub_download(repo_id="kartiknarayan/SegFace", filename="swinv2b_celeba_512/model_299.pt", local_dir="./weights") ``` ## Citation ```bibtex @article{narayan2024segface, title={SegFace: Face Segmentation of Long-Tail Classes}, author={Narayan, Kartik and VS, Vibashan and Patel, Vishal M}, journal={arXiv preprint arXiv:2412.08647}, year={2024} } ``` Please check our [GitHub repository](https://github.com/Kartik-3004/SegFace) for complete instructions.