|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
|
|
from transformers import LlamaConfig, Qwen2Config |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
from .configuration_intern_vit import InternVisionConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class InternVLChatConfig(PretrainedConfig): |
|
model_type = "internvl_chat" |
|
is_composition = True |
|
|
|
def __init__( |
|
self, |
|
vision_config=None, |
|
llm_config=None, |
|
use_backbone_lora=0, |
|
use_llm_lora=0, |
|
select_layer=-1, |
|
force_image_size=None, |
|
downsample_ratio=0.5, |
|
template=None, |
|
dynamic_image_size=False, |
|
use_thumbnail=False, |
|
ps_version="v1", |
|
min_dynamic_patch=1, |
|
max_dynamic_patch=6, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
logger.info("vision_config is None. Initializing the InternVisionConfig with default values.") |
|
|
|
if llm_config is None: |
|
llm_config = {"architectures": ["Qwen2ForCausalLM"]} |
|
logger.info("llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).") |
|
|
|
self.vision_config = InternVisionConfig(**vision_config) |
|
if llm_config["architectures"][0] == "LlamaForCausalLM": |
|
self.llm_config = LlamaConfig(**llm_config) |
|
elif llm_config["architectures"][0] == "Qwen2ForCausalLM": |
|
self.llm_config = Qwen2Config(**llm_config) |
|
else: |
|
raise ValueError("Unsupported architecture: {}".format(llm_config["architectures"][0])) |
|
self.use_backbone_lora = use_backbone_lora |
|
self.use_llm_lora = use_llm_lora |
|
self.select_layer = select_layer |
|
self.force_image_size = force_image_size |
|
self.downsample_ratio = downsample_ratio |
|
self.template = template |
|
self.dynamic_image_size = dynamic_image_size |
|
self.use_thumbnail = use_thumbnail |
|
self.ps_version = ps_version |
|
self.min_dynamic_patch = min_dynamic_patch |
|
self.max_dynamic_patch = max_dynamic_patch |
|
|
|
logger.info(f"vision_select_layer: {self.select_layer}") |
|
logger.info(f"ps_version: {self.ps_version}") |
|
logger.info(f"min_dynamic_patch: {self.min_dynamic_patch}") |
|
logger.info(f"max_dynamic_patch: {self.max_dynamic_patch}") |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. |
|
|
|
Returns: |
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = copy.deepcopy(self.__dict__) |
|
output["vision_config"] = self.vision_config.to_dict() |
|
output["llm_config"] = self.llm_config.to_dict() |
|
output["model_type"] = self.__class__.model_type |
|
output["use_backbone_lora"] = self.use_backbone_lora |
|
output["use_llm_lora"] = self.use_llm_lora |
|
output["select_layer"] = self.select_layer |
|
output["force_image_size"] = self.force_image_size |
|
output["downsample_ratio"] = self.downsample_ratio |
|
output["template"] = self.template |
|
output["dynamic_image_size"] = self.dynamic_image_size |
|
output["use_thumbnail"] = self.use_thumbnail |
|
output["ps_version"] = self.ps_version |
|
output["min_dynamic_patch"] = self.min_dynamic_patch |
|
output["max_dynamic_patch"] = self.max_dynamic_patch |
|
|
|
return output |
|
|