Upload 15 files
Browse files- config.json +5 -3
- generation_config.json +1 -1
- model.safetensors +2 -2
- modeling_internvl_chat.py +7 -9
config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"_commit_hash": null,
|
3 |
-
"_name_or_path": "internvl2-tiny",
|
4 |
"architectures": [
|
5 |
"InternVLChatModel"
|
6 |
],
|
@@ -14,6 +14,7 @@
|
|
14 |
"force_image_size": 28,
|
15 |
"img_context_token_id": 151648,
|
16 |
"llm_config": {
|
|
|
17 |
"_name_or_path": "Qwen/Qwen2-0.5B-Instruct",
|
18 |
"add_cross_attention": false,
|
19 |
"architectures": [
|
@@ -89,7 +90,7 @@
|
|
89 |
"top_p": 1.0,
|
90 |
"torch_dtype": "bfloat16",
|
91 |
"torchscript": false,
|
92 |
-
"transformers_version": "4.
|
93 |
"typical_p": 1.0,
|
94 |
"use_bfloat16": true,
|
95 |
"use_cache": true,
|
@@ -108,6 +109,7 @@
|
|
108 |
"use_llm_lora": 0,
|
109 |
"use_thumbnail": true,
|
110 |
"vision_config": {
|
|
|
111 |
"_name_or_path": "",
|
112 |
"add_cross_attention": false,
|
113 |
"architectures": [
|
@@ -186,7 +188,7 @@
|
|
186 |
"top_p": 1.0,
|
187 |
"torch_dtype": "bfloat16",
|
188 |
"torchscript": false,
|
189 |
-
"transformers_version": "4.
|
190 |
"typical_p": 1.0,
|
191 |
"use_bfloat16": true,
|
192 |
"use_flash_attn": false
|
|
|
1 |
{
|
2 |
"_commit_hash": null,
|
3 |
+
"_name_or_path": "/home/ea/work/my_optimum_intel/optimum-intel/internvl2-tiny",
|
4 |
"architectures": [
|
5 |
"InternVLChatModel"
|
6 |
],
|
|
|
14 |
"force_image_size": 28,
|
15 |
"img_context_token_id": 151648,
|
16 |
"llm_config": {
|
17 |
+
"_attn_implementation_autoset": true,
|
18 |
"_name_or_path": "Qwen/Qwen2-0.5B-Instruct",
|
19 |
"add_cross_attention": false,
|
20 |
"architectures": [
|
|
|
90 |
"top_p": 1.0,
|
91 |
"torch_dtype": "bfloat16",
|
92 |
"torchscript": false,
|
93 |
+
"transformers_version": "4.46.2",
|
94 |
"typical_p": 1.0,
|
95 |
"use_bfloat16": true,
|
96 |
"use_cache": true,
|
|
|
109 |
"use_llm_lora": 0,
|
110 |
"use_thumbnail": true,
|
111 |
"vision_config": {
|
112 |
+
"_attn_implementation_autoset": true,
|
113 |
"_name_or_path": "",
|
114 |
"add_cross_attention": false,
|
115 |
"architectures": [
|
|
|
188 |
"top_p": 1.0,
|
189 |
"torch_dtype": "bfloat16",
|
190 |
"torchscript": false,
|
191 |
+
"transformers_version": "4.46.2",
|
192 |
"typical_p": 1.0,
|
193 |
"use_bfloat16": true,
|
194 |
"use_flash_attn": false
|
generation_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
-
"transformers_version": "4.
|
4 |
}
|
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.46.2"
|
4 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9f0331124d4efa1050990abf1755529dc4c161abcd9efa40dab5df83495c290
|
3 |
+
size 68292216
|
modeling_internvl_chat.py
CHANGED
@@ -20,7 +20,7 @@ from .conversation import get_conv_template
|
|
20 |
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
21 |
|
22 |
|
23 |
-
logger = logging.get_logger(__name__)
|
24 |
|
25 |
|
26 |
def version_cmp(v1, v2, op="eq"):
|
@@ -39,7 +39,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
39 |
_supports_flash_attn_2 = True
|
40 |
_no_split_modules = ["InternVisionModel", "LlamaDecoderLayer", "Qwen2DecoderLayer"]
|
41 |
|
42 |
-
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=
|
43 |
super().__init__(config)
|
44 |
|
45 |
assert version_cmp(transformers.__version__, "4.37.0", "ge")
|
@@ -55,8 +55,8 @@ class InternVLChatModel(PreTrainedModel):
|
|
55 |
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
56 |
config.llm_config._attn_implementation = "flash_attention_2" if use_flash_attn else "eager"
|
57 |
|
58 |
-
logger.info(f"num_image_token: {self.num_image_token}")
|
59 |
-
logger.info(f"ps_version: {self.ps_version}")
|
60 |
if vision_model is not None:
|
61 |
self.vision_model = vision_model
|
62 |
else:
|
@@ -103,7 +103,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
103 |
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
104 |
|
105 |
vit_embeds = self.extract_feature(pixel_values)
|
106 |
-
|
107 |
|
108 |
B, N, C = input_embeds.shape
|
109 |
input_embeds = input_embeds.reshape(B * N, C)
|
@@ -289,9 +289,6 @@ class InternVLChatModel(PreTrainedModel):
|
|
289 |
template.append_message(template.roles[1], None)
|
290 |
query = template.get_prompt()
|
291 |
|
292 |
-
print(self.num_image_token)
|
293 |
-
print(num_patches_list)
|
294 |
-
|
295 |
if verbose and pixel_values is not None:
|
296 |
image_bs = pixel_values.shape[0]
|
297 |
print(f"dynamic ViT batch size: {image_bs}")
|
@@ -300,7 +297,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
300 |
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
301 |
query = query.replace("<image>", image_tokens, 1)
|
302 |
|
303 |
-
|
304 |
model_inputs = tokenizer(query, return_tensors="pt")
|
305 |
input_ids = model_inputs["input_ids"].to(self.device)
|
306 |
attention_mask = model_inputs["attention_mask"].to(self.device)
|
@@ -356,6 +353,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
356 |
attention_mask=attention_mask,
|
357 |
generation_config=generation_config,
|
358 |
output_hidden_states=output_hidden_states,
|
|
|
359 |
use_cache=True,
|
360 |
**generate_kwargs,
|
361 |
)
|
|
|
20 |
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
21 |
|
22 |
|
23 |
+
#logger = logging.get_logger(__name__)
|
24 |
|
25 |
|
26 |
def version_cmp(v1, v2, op="eq"):
|
|
|
39 |
_supports_flash_attn_2 = True
|
40 |
_no_split_modules = ["InternVisionModel", "LlamaDecoderLayer", "Qwen2DecoderLayer"]
|
41 |
|
42 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=False):
|
43 |
super().__init__(config)
|
44 |
|
45 |
assert version_cmp(transformers.__version__, "4.37.0", "ge")
|
|
|
55 |
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
56 |
config.llm_config._attn_implementation = "flash_attention_2" if use_flash_attn else "eager"
|
57 |
|
58 |
+
#logger.info(f"num_image_token: {self.num_image_token}")
|
59 |
+
#logger.info(f"ps_version: {self.ps_version}")
|
60 |
if vision_model is not None:
|
61 |
self.vision_model = vision_model
|
62 |
else:
|
|
|
103 |
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
104 |
|
105 |
vit_embeds = self.extract_feature(pixel_values)
|
106 |
+
pixel_values.shape[0]
|
107 |
|
108 |
B, N, C = input_embeds.shape
|
109 |
input_embeds = input_embeds.reshape(B * N, C)
|
|
|
289 |
template.append_message(template.roles[1], None)
|
290 |
query = template.get_prompt()
|
291 |
|
|
|
|
|
|
|
292 |
if verbose and pixel_values is not None:
|
293 |
image_bs = pixel_values.shape[0]
|
294 |
print(f"dynamic ViT batch size: {image_bs}")
|
|
|
297 |
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
298 |
query = query.replace("<image>", image_tokens, 1)
|
299 |
|
300 |
+
|
301 |
model_inputs = tokenizer(query, return_tensors="pt")
|
302 |
input_ids = model_inputs["input_ids"].to(self.device)
|
303 |
attention_mask = model_inputs["attention_mask"].to(self.device)
|
|
|
353 |
attention_mask=attention_mask,
|
354 |
generation_config=generation_config,
|
355 |
output_hidden_states=output_hidden_states,
|
356 |
+
return_dict=return_dict,
|
357 |
use_cache=True,
|
358 |
**generate_kwargs,
|
359 |
)
|