File size: 16,021 Bytes
f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d 80ae08b f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d 80ae08b f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d bc58373 f68432d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import json
import math
from copy import deepcopy
from threading import Thread
import torch
from PIL import Image
from transformers import AutoProcessor, Qwen2ForCausalLM, Qwen2PreTrainedModel, TextIteratorStreamer
from .configuration_minicpm import MiniCPMVConfig
from .modeling_navit_siglip import SiglipVisionTransformer
from .resampler import Resampler
class MiniCPMVPreTrainedModel(Qwen2PreTrainedModel):
config_class = MiniCPMVConfig
class MiniCPMV(MiniCPMVPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.llm = Qwen2ForCausalLM(config)
self.vpm = self.init_vision_module()
self.vision_dim = self.vpm.embed_dim
self.embed_dim = self.llm.config.hidden_size
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
self.processor = None
self.terminators = ["<|im_end|>", "<|endoftext|>"]
def init_vision_module(self):
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
if self.config._attn_implementation == "flash_attention_2":
self.config.vision_config._attn_implementation = "flash_attention_2"
else:
# not suport sdpa
self.config.vision_config._attn_implementation = "eager"
model = SiglipVisionTransformer(self.config.vision_config)
if self.config.drop_vision_last_layer:
model.encoder.layers = model.encoder.layers[:-1]
setattr(model, "embed_dim", model.embeddings.embed_dim)
setattr(model, "patch_size", model.embeddings.patch_size)
return model
def init_resampler(self, embed_dim, vision_dim):
return Resampler(
num_queries=self.config.query_num,
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
adaptive=True,
)
def get_input_embeddings(self):
return self.llm.get_input_embeddings()
def set_input_embeddings(self, value):
self.llm.embed_tokens = value
def get_output_embeddings(self):
return self.llm.lm_head
def set_output_embeddings(self, new_embeddings):
self.llm.lm_head = new_embeddings
def set_decoder(self, decoder):
self.llm = decoder
def get_decoder(self):
return self.llm
def get_vllm_embedding(self, data):
if "vision_hidden_states" not in data:
dtype = self.llm.model.embed_tokens.weight.dtype
device = self.llm.model.embed_tokens.weight.device
tgt_sizes = data["tgt_sizes"]
pixel_values_list = data["pixel_values"]
vision_hidden_states = []
all_pixel_values = []
img_cnt = []
for pixel_values in pixel_values_list:
img_cnt.append(len(pixel_values))
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
# exist image
if all_pixel_values:
tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)]
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
all_pixel_values = torch.nn.utils.rnn.pad_sequence(
all_pixel_values, batch_first=True, padding_value=0.0
)
B, L, _ = all_pixel_values.shape
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
for i in range(B):
patch_attn_mask[i, 0, : tgt_sizes[i][0] * tgt_sizes[i][1]] = True
vision_batch_size = self.config.vision_batch_size
all_pixel_values = all_pixel_values.type(dtype)
if B > vision_batch_size:
hs = []
for i in range(0, B, vision_batch_size):
start_idx = i
end_idx = i + vision_batch_size
tmp_hs = self.vpm(
all_pixel_values[start_idx:end_idx],
patch_attention_mask=patch_attn_mask[start_idx:end_idx],
tgt_sizes=tgt_sizes[start_idx:end_idx],
).last_hidden_state
hs.append(tmp_hs)
vision_embedding = torch.cat(hs, dim=0)
else:
vision_embedding = self.vpm(
all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes
).last_hidden_state
vision_embedding = self.resampler(vision_embedding, tgt_sizes)
start = 0
for pixel_values in pixel_values_list:
img_cnt = len(pixel_values)
if img_cnt > 0:
vision_hidden_states.append(vision_embedding[start : start + img_cnt])
start += img_cnt
else:
vision_hidden_states.append([])
else: # no image
if self.training:
dummy_image = torch.zeros((1, 3, 224, 224), device=device, dtype=dtype)
tgt_sizes = torch.Tensor(
[[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]
).type(torch.int32)
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
else:
dummy_feature = []
for _ in range(len(pixel_values_list)):
vision_hidden_states.append(dummy_feature)
else:
vision_hidden_states = data["vision_hidden_states"]
if hasattr(self.llm.config, "scale_emb"):
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
else:
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"])
vision_hidden_states = [
i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
]
bs = len(data["input_ids"])
for i in range(bs):
cur_vs_hs = vision_hidden_states[i]
if len(cur_vs_hs) > 0:
cur_vllm_emb = vllm_embedding[i]
cur_image_bound = data["image_bound"][i]
if len(cur_image_bound) > 0:
image_indices = torch.stack(
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
).to(vllm_embedding.device)
cur_vllm_emb.scatter_(
0,
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
)
elif self.training:
cur_vllm_emb += cur_vs_hs[0].mean() * 0
return vllm_embedding, vision_hidden_states
def forward(self, data, **kwargs):
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
position_ids = data["position_ids"]
if position_ids.dtype != torch.int64:
position_ids = position_ids.long()
return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs)
def _decode(self, inputs_embeds, tokenizer, attention_mask, decode_text=False, **kwargs):
terminators = None
if tokenizer is not None:
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
kwargs.pop("image_sizes", None)
output = self.llm.generate(
inputs_embeds=inputs_embeds,
# pad_token_id=0,
eos_token_id=terminators,
attention_mask=attention_mask,
**kwargs,
)
if decode_text:
return self._decode_text(output, tokenizer)
return output
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
streamer = TextIteratorStreamer(tokenizer=tokenizer)
generation_kwargs = {
"inputs_embeds": inputs_embeds,
"pad_token_id": 0,
"eos_token_id": terminators,
"streamer": streamer,
}
generation_kwargs.update(kwargs)
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
thread.start()
return streamer
def _decode_text(self, result_ids, tokenizer):
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
result_text = []
for result in result_ids:
result = result[result != 0]
if result[0] == tokenizer.bos_id:
result = result[1:]
if result[-1] in terminators:
result = result[:-1]
result_text.append(tokenizer.decode(result).strip())
return result_text
def generate(
self,
input_ids=None,
pixel_values=None,
tgt_sizes=None,
image_bound=None,
attention_mask=None,
tokenizer=None,
vision_hidden_states=None,
return_vision_hidden_states=False,
stream=False,
decode_text=False,
**kwargs,
):
assert input_ids is not None
assert len(input_ids) == len(pixel_values)
model_inputs = {
"input_ids": input_ids,
"image_bound": image_bound,
}
if vision_hidden_states is None:
model_inputs["pixel_values"] = pixel_values
model_inputs["tgt_sizes"] = tgt_sizes
else:
model_inputs["vision_hidden_states"] = vision_hidden_states
with torch.inference_mode():
(
model_inputs["inputs_embeds"],
vision_hidden_states,
) = self.get_vllm_embedding(model_inputs)
if stream:
result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
else:
result = self._decode(
model_inputs["inputs_embeds"], tokenizer, attention_mask, decode_text=decode_text, **kwargs
)
if return_vision_hidden_states:
return result, vision_hidden_states
return result
def chat(
self,
image,
msgs,
tokenizer,
processor=None,
vision_hidden_states=None,
max_new_tokens=2048,
min_new_tokens=0,
sampling=True,
max_inp_length=8192,
system_prompt="",
stream=False,
max_slice_nums=None,
use_image_id=None,
**kwargs,
):
if isinstance(msgs[0], list):
batched = True
else:
batched = False
msgs_list = msgs
images_list = image
if batched is False:
images_list, msgs_list = [images_list], [msgs_list]
else:
assert images_list is None, "Please integrate image to msgs when using batch inference."
images_list = [None] * len(msgs_list)
assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."
if processor is None:
if self.processor is None:
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
processor = self.processor
assert (
self.config.query_num == processor.image_processor.image_feature_size
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.patch_size == processor.image_processor.patch_size
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.use_image_id == processor.image_processor.use_image_id
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.slice_mode == processor.image_processor.slice_mode
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
prompts_lists = []
input_images_lists = []
for image, msgs in zip(images_list, msgs_list):
if isinstance(msgs, str):
msgs = json.loads(msgs)
copy_msgs = deepcopy(msgs)
assert len(msgs) > 0, "msgs is empty"
assert sampling or not stream, "if use stream mode, make sure sampling=True"
if image is not None and isinstance(copy_msgs[0]["content"], str):
copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
images = []
for i, msg in enumerate(copy_msgs):
role = msg["role"]
content = msg["content"]
assert role in ["user", "assistant"]
if i == 0:
assert role == "user", "The role of first msg should be user"
if isinstance(content, str):
content = [content]
cur_msgs = []
for c in content:
if isinstance(c, Image.Image):
images.append(c)
cur_msgs.append("(<image>./</image>)")
elif isinstance(c, str):
cur_msgs.append(c)
msg["content"] = "\n".join(cur_msgs)
if system_prompt:
sys_msg = {"role": "system", "content": system_prompt}
copy_msgs = [sys_msg] + copy_msgs
prompts_lists.append(
processor.tokenizer.apply_chat_template(copy_msgs, tokenize=False, add_generation_prompt=True)
)
input_images_lists.append(images)
inputs = processor(
prompts_lists,
input_images_lists,
max_slice_nums=max_slice_nums,
use_image_id=use_image_id,
return_tensors="pt",
max_length=max_inp_length,
).to(self.device)
if sampling:
generation_config = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"repetition_penalty": 1.05,
}
else:
generation_config = {
"num_beams": 3,
"repetition_penalty": 1.2,
}
if min_new_tokens > 0:
generation_config["min_new_tokens"] = min_new_tokens
generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())
inputs.pop("image_sizes", None)
with torch.inference_mode():
res = self.generate(
**inputs,
tokenizer=tokenizer,
max_new_tokens=max_new_tokens,
vision_hidden_states=vision_hidden_states,
stream=stream,
decode_text=True,
**generation_config,
)
if stream:
def stream_gen():
for text in res:
for term in self.terminators:
text = text.replace(term, "")
yield text
return stream_gen()
else:
if batched:
answer = res
else:
answer = res[0]
return answer
|