|
|
|
""" MiniCPMV model configuration""" |
|
|
|
import os |
|
from typing import Union |
|
|
|
from transformers import PretrainedConfig, Qwen2Config |
|
from transformers.utils import logging |
|
|
|
from .modeling_navit_siglip import SiglipVisionConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class MiniCPMVSliceConfig(PretrainedConfig): |
|
model_type = "minicpmv" |
|
|
|
def __init__( |
|
self, |
|
patch_size=14, |
|
max_slice_nums=9, |
|
scale_resolution=448, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.patch_size = patch_size |
|
self.max_slice_nums = max_slice_nums |
|
self.scale_resolution = scale_resolution |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
if config_dict.get("model_type") == "minicpmv": |
|
config_dict = config_dict["slice_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class MiniCPMVConfig(Qwen2Config): |
|
model_type = "minicpmv" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
default_vision_config = { |
|
"hidden_size": 1152, |
|
"image_size": 980, |
|
"intermediate_size": 4304, |
|
"model_type": "siglip", |
|
"num_attention_heads": 16, |
|
"num_hidden_layers": 27, |
|
"patch_size": 14, |
|
} |
|
|
|
def __init__( |
|
self, |
|
use_cache=True, |
|
query_num=64, |
|
image_size=448, |
|
drop_vision_last_layer=True, |
|
batch_vision_input=True, |
|
slice_config=None, |
|
vision_config=None, |
|
use_image_id=True, |
|
vision_batch_size=16, |
|
**kwargs, |
|
): |
|
self.use_cache = use_cache |
|
self.query_num = query_num |
|
self.image_size = image_size |
|
self.drop_vision_last_layer = drop_vision_last_layer |
|
self.batch_vision_input = batch_vision_input |
|
self.use_image_id = use_image_id |
|
self.vision_batch_size = vision_batch_size |
|
|
|
if slice_config is None: |
|
self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1) |
|
else: |
|
self.slice_config = MiniCPMVSliceConfig(**slice_config) |
|
self.slice_mode = True |
|
|
|
|
|
if vision_config is None: |
|
self.vision_config = SiglipVisionConfig(**self.default_vision_config) |
|
logger.info("vision_config is None, using default vision config") |
|
elif isinstance(vision_config, dict): |
|
self.vision_config = SiglipVisionConfig(**vision_config) |
|
elif isinstance(vision_config, SiglipVisionConfig): |
|
self.vision_config = vision_config |
|
|
|
self.patch_size = self.vision_config.patch_size |
|
|
|
super().__init__(**kwargs) |
|
|